If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1-2 |
Quadratic Expressions and Equations
|
Factorisation of quadratic expressions
Completing squares |
By the end of the
lesson, the learner
should be able to:
Factorize quadratic expressions Write the perfect squares Apply factorization methods to solve problems Factorize quadratic expression by completing square method Apply completing square to complex expressions Transform expressions to vertex form |
Q/A on revision of linear expressions
Discussions on quadratic expression patterns Solving problems using factorization Demonstrations on factorization techniques Explaining step-by-step methods Q/A on completing square basics Discussions on advanced applications Solving complex expressions Demonstrations of vertex form transformation Explaining complete methodology |
Calculators, charts showing factorization patterns
Calculators, factorization method charts Calculators, vertex form examples |
KLB Mathematics Book Three Pg 1
KLB Mathematics Book Three Pg 3-4 |
|
2 | 3 |
Quadratic Expressions and Equations
|
Solving quadratic expressions by completing square
Solving quadratic expressions by factorization |
By the end of the
lesson, the learner
should be able to:
Solve quadratic expressions by completing square Apply completing square method to equations Verify solutions by substitution |
Q/A on equation solving methods
Discussions on systematic solving approach Solving equations step-by-step Demonstrations of verification methods Explaining solution processes |
Calculators, equation solving guides
Calculators, method selection charts |
KLB Mathematics Book Three Pg 5-6
|
|
2 | 4 |
Quadratic Expressions and Equations
|
The quadratic formula
|
By the end of the
lesson, the learner
should be able to:
Solve quadratic expressions using the quadratic formula Apply quadratic formula to any quadratic equation Derive the quadratic formula |
Q/A on formula derivation steps
Discussions on formula applications Solving equations using formula Demonstrations of derivation process Explaining formula structure |
Calculators, formula derivation charts
|
KLB Mathematics Book Three Pg 7-9
|
|
2 | 5 |
Quadratic Expressions and Equations
|
The quadratic formula
Formation of quadratic equations |
By the end of the
lesson, the learner
should be able to:
Solve quadratic expressions using the quadratic formula Apply formula to complex coefficients Interpret discriminant values |
Q/A on formula mastery
Discussions on discriminant meaning Solving complex equations Demonstrations of discriminant analysis Explaining nature of roots |
Calculators, discriminant interpretation guides
Calculators, word problem templates |
KLB Mathematics Book Three Pg 7-9
|
|
2 | 6 |
Quadratic Expressions and Equations
|
Graphs of quadratic functions
|
By the end of the
lesson, the learner
should be able to:
Draw a table of the quadratic functions Plot coordinates accurately Construct systematic value tables |
Q/A on coordinate geometry basics
Discussions on table construction Solving plotting problems Demonstrations of systematic plotting Explaining table creation methods |
Graph papers, calculators, plotting guides
|
KLB Mathematics Book Three Pg 12-15
|
|
2 | 7 |
Quadratic Expressions and Equations
|
Graphs of quadratic functions
|
By the end of the
lesson, the learner
should be able to:
Draw a table of the quadratic functions Plot coordinates accurately Construct systematic value tables |
Q/A on coordinate geometry basics
Discussions on table construction Solving plotting problems Demonstrations of systematic plotting Explaining table creation methods |
Graph papers, calculators, plotting guides
|
KLB Mathematics Book Three Pg 12-15
|
|
3 | 1-2 |
Quadratic Expressions and Equations
|
Graphs of quadratic functions
Graphical solutions of quadratic equation |
By the end of the
lesson, the learner
should be able to:
Draw graphs of quadratic functions Identify vertex and axis of symmetry Find intercepts from graphs Draw graphs of quadratic functions Solve quadratic equations using the graphs Find roots as x-intercepts |
Q/A on graph plotting techniques
Discussions on graph features Solving graphing problems Demonstrations of feature identification Explaining graph properties Q/A on graph-equation relationships Discussions on graphical solutions Solving equations graphically Demonstrations of root finding Explaining intersection concepts |
Graph papers, calculators, rulers
|
KLB Mathematics Book Three Pg 12-15
KLB Mathematics Book Three Pg 15-17 |
|
3 | 3 |
Quadratic Expressions and Equations
|
Graphical solutions of quadratic equation
|
By the end of the
lesson, the learner
should be able to:
Solve quadratic equations using the graphs Verify algebraic solutions graphically Estimate solutions from graphs |
Q/A on solution verification
Discussions on estimation techniques Solving complex graphical problems Demonstrations of verification methods Explaining accuracy in estimation |
Graph papers, calculators, estimation guides
|
KLB Mathematics Book Three Pg 17-19
|
|
3 | 4 |
Quadratic Expressions and Equations
|
Graphical solutions of quadratic equation
|
By the end of the
lesson, the learner
should be able to:
Solve quadratic equations using the graphs Verify algebraic solutions graphically Estimate solutions from graphs |
Q/A on solution verification
Discussions on estimation techniques Solving complex graphical problems Demonstrations of verification methods Explaining accuracy in estimation |
Graph papers, calculators, estimation guides
|
KLB Mathematics Book Three Pg 17-19
|
|
3 | 5 |
Quadratic Expressions and Equations
|
Graphical solutions of simultaneous equations
|
By the end of the
lesson, the learner
should be able to:
Draw tables for simultaneous equations Find the graphical solutions of simultaneous equations Solve systems involving quadratic and linear equations |
Q/A on simultaneous equation concepts
Discussions on intersection analysis Solving systems of equations Demonstrations of intersection finding Explaining solution interpretation |
Graph papers, calculators, intersection analysis guides
|
KLB Mathematics Book Three Pg 19-21
|
|
3 | 6 |
Approximations and Errors
|
Computing using calculators
|
By the end of the
lesson, the learner
should be able to:
Solve basic operations using calculators Use calculator functions effectively Apply calculator to mathematical computations |
Q/A on calculator familiarity
Discussions on calculator operations Solving basic arithmetic problems Demonstrations of calculator functions Explaining proper calculator usage |
Calculators, operation guides
|
KLB Mathematics Book Three Pg 24-26
|
|
3 | 7 |
Approximations and Errors
|
Computing using calculators
|
By the end of the
lesson, the learner
should be able to:
Solve basic operations using calculators Perform complex calculations accurately Verify calculator results |
Q/A on calculator accuracy
Discussions on verification methods Solving complex computational problems Demonstrations of result checking Explaining calculation verification |
Calculators, verification worksheets
|
KLB Mathematics Book Three Pg 26-28
|
|
4 | 1-2 |
Approximations and Errors
|
Approximation
|
By the end of the
lesson, the learner
should be able to:
Approximate values by rounding off Round numbers to specified decimal places Apply rounding rules correctly |
Q/A on rounding concepts
Discussions on rounding techniques Solving rounding problems Demonstrations of rounding methods Explaining rounding rules and applications |
Calculators, rounding charts
|
KLB Mathematics Book Three Pg 29-30
|
|
4 | 3 |
Approximations and Errors
|
Estimation
|
By the end of the
lesson, the learner
should be able to:
Approximate values by truncation Estimate values using appropriate methods Compare estimation techniques |
Q/A on estimation strategies
Discussions on truncation vs rounding Solving estimation problems Demonstrations of truncation methods Explaining when to use different techniques |
Calculators, estimation guides
|
KLB Mathematics Book Three Pg 30
|
|
4 | 4 |
Approximations and Errors
|
Accuracy and errors
|
By the end of the
lesson, the learner
should be able to:
Find the absolute error Calculate relative error Distinguish between different error types |
Q/A on error concepts
Discussions on error calculations Solving absolute and relative error problems Demonstrations of error computation Explaining error significance |
Calculators, error calculation sheets
|
KLB Mathematics Book Three Pg 31-32
|
|
4 | 5 |
Approximations and Errors
|
Accuracy and errors
|
By the end of the
lesson, the learner
should be able to:
Find the absolute error Calculate relative error Distinguish between different error types |
Q/A on error concepts
Discussions on error calculations Solving absolute and relative error problems Demonstrations of error computation Explaining error significance |
Calculators, error calculation sheets
|
KLB Mathematics Book Three Pg 31-32
|
|
4 | 6 |
Approximations and Errors
|
Percentage error
|
By the end of the
lesson, the learner
should be able to:
Find the percentage error of a given value Calculate percentage error accurately Interpret percentage error results |
Q/A on percentage concepts
Discussions on percentage error meaning Solving percentage error problems Demonstrations of percentage calculations Explaining error interpretation |
Calculators, percentage error worksheets
|
KLB Mathematics Book Three Pg 32-34
|
|
4 | 7 |
Approximations and Errors
|
Rounding off error and truncation error
|
By the end of the
lesson, the learner
should be able to:
Find the rounding off error Calculate truncation error Compare rounding and truncation errors |
Q/A on error types
Discussions on error sources Solving rounding and truncation error problems Demonstrations of error comparison Explaining error analysis |
Calculators, error comparison charts
|
KLB Mathematics Book Three Pg 34
|
|
5 | 1-2 |
Approximations and Errors
|
Propagation of errors
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in addition and subtraction Calculate combined errors Apply error propagation rules |
Q/A on error propagation concepts
Discussions on addition/subtraction errors Solving error propagation problems Demonstrations of error combination Explaining propagation principles |
Calculators, error propagation guides
|
KLB Mathematics Book Three Pg 35-36
|
|
5 | 3 |
Approximations and Errors
|
Propagation of errors
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in addition and subtraction Apply error propagation to complex problems Verify error calculations |
Q/A on propagation mastery
Discussions on complex error scenarios Solving advanced propagation problems Demonstrations of verification methods Explaining error validation |
Calculators, verification worksheets
|
KLB Mathematics Book Three Pg 35-36
|
|
5 | 4 |
Approximations and Errors
|
Propagation of errors in multiplication
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in multiplication Calculate relative errors in products Apply multiplication error rules |
Q/A on multiplication error concepts
Discussions on product error calculation Solving multiplication error problems Demonstrations of relative error computation Explaining multiplication error principles |
Calculators, multiplication error guides
|
KLB Mathematics Book Three Pg 36-37
|
|
5 | 5 |
Approximations and Errors
|
Propagation of errors in multiplication
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in multiplication Solve complex multiplication error problems Compare different error propagation methods |
Q/A on advanced multiplication errors
Discussions on complex error scenarios Solving challenging multiplication problems Demonstrations of method comparison Explaining optimal error calculation |
Calculators, method comparison charts
|
KLB Mathematics Book Three Pg 36-37
|
|
5 | 6 |
Approximations and Errors
|
Propagation of errors in multiplication
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in multiplication Solve complex multiplication error problems Compare different error propagation methods |
Q/A on advanced multiplication errors
Discussions on complex error scenarios Solving challenging multiplication problems Demonstrations of method comparison Explaining optimal error calculation |
Calculators, method comparison charts
|
KLB Mathematics Book Three Pg 36-37
|
|
5 | 7 |
Approximations and Errors
|
Propagation of errors in division
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in division Calculate errors in quotients Apply division error rules |
Q/A on division error concepts
Discussions on quotient error calculation Solving division error problems Demonstrations of division error methods Explaining division error principles |
Calculators, division error worksheets
|
KLB Mathematics Book Three Pg 37-38
|
|
6 | 1-2 |
Approximations and Errors
|
Propagation of errors in division
Word problems |
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in division Solve complex division error problems Verify division error calculations Find the propagation of errors of a word problem Apply error analysis to real-world situations Solve comprehensive error problems |
Q/A on division error mastery
Discussions on complex division scenarios Solving advanced division error problems Demonstrations of error verification Explaining accuracy in division errors Q/A on chapter consolidation Discussions on real-world applications Solving comprehensive word problems Demonstrations of problem-solving strategies Explaining practical error analysis |
Calculators, verification guides
Calculators, word problem sets, comprehensive review sheets |
KLB Mathematics Book Three Pg 37-38
KLB Mathematics Book Three Pg 39-40 |
|
6 | 3 |
Approximations and Errors
|
Word problems
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors of a word problem Apply error analysis to real-world situations Solve comprehensive error problems |
Q/A on chapter consolidation
Discussions on real-world applications Solving comprehensive word problems Demonstrations of problem-solving strategies Explaining practical error analysis |
Calculators, word problem sets, comprehensive review sheets
|
KLB Mathematics Book Three Pg 39-40
|
|
6 | 4 |
Probability
|
Introduction
|
By the end of the
lesson, the learner
should be able to:
Calculate the experimental probability Understand probability concepts in daily life Distinguish between certain and uncertain events Recognize probability situations |
Q/A on uncertain events from daily life experiences
Discussions on weather prediction and game outcomes Analyzing chance events using coin tossing and dice rolling Demonstrations using simple probability experiments Explaining probability language using familiar examples |
Chalk and blackboard, coins, dice made from cardboard, exercise books
|
KLB Mathematics Book Three Pg 262-264
|
|
6 | 5 |
Probability
|
Experimental Probability
|
By the end of the
lesson, the learner
should be able to:
Calculate the experimental probability Conduct probability experiments systematically Record and analyze experimental data Compare experimental results with expectations |
Q/A on frequency counting using repeated experiments
Discussions on trial repetition and result recording Solving experimental probability problems using data collection Demonstrations using coin toss and dice roll experiments Explaining frequency ratio calculations using practical examples |
Chalk and blackboard, coins, cardboard dice, tally charts, exercise books
|
KLB Mathematics Book Three Pg 262-264
|
|
6 | 6 |
Probability
|
Experimental Probability applications
|
By the end of the
lesson, the learner
should be able to:
Calculate the experimental probability Apply experimental methods to various scenarios Handle large sample experiments Analyze experimental probability patterns |
Q/A on advanced experimental techniques using extended trials
Discussions on sample size effects using comparative data Solving complex experimental problems using systematic methods Demonstrations using extended experimental procedures Explaining pattern analysis using accumulated data |
Chalk and blackboard, extended experimental materials, data recording sheets, exercise books
|
KLB Mathematics Book Three Pg 262-264
|
|
6 | 7 |
Probability
|
Experimental Probability applications
|
By the end of the
lesson, the learner
should be able to:
Calculate the experimental probability Apply experimental methods to various scenarios Handle large sample experiments Analyze experimental probability patterns |
Q/A on advanced experimental techniques using extended trials
Discussions on sample size effects using comparative data Solving complex experimental problems using systematic methods Demonstrations using extended experimental procedures Explaining pattern analysis using accumulated data |
Chalk and blackboard, extended experimental materials, data recording sheets, exercise books
|
KLB Mathematics Book Three Pg 262-264
|
|
7 | 1-2 |
Probability
|
Range of Probability Measure
Probability Space |
By the end of the
lesson, the learner
should be able to:
Calculate the range of probability measure Express probabilities on scale from 0 to 1 Convert between fractions, decimals, and percentages Interpret probability values correctly Calculate the probability space for the theoretical probability Define sample space systematically List all possible outcomes Apply sample space concepts |
Q/A on probability scale using number line representations
Discussions on probability conversion between forms Solving probability scale problems using systematic methods Demonstrations using probability line and scale examples Explaining scale interpretation using practical scenarios Q/A on outcome listing using systematic enumeration Discussions on complete outcome identification Solving sample space problems using organized listing Demonstrations using dice, cards, and spinner examples Explaining probability calculation using outcome counting |
Chalk and blackboard, number line drawings, probability scale charts, exercise books
Chalk and blackboard, playing cards (locally made), spinners from cardboard, exercise books |
KLB Mathematics Book Three Pg 265-266
KLB Mathematics Book Three Pg 266-267 |
|
7 | 3 |
Probability
|
Theoretical Probability
|
By the end of the
lesson, the learner
should be able to:
Calculate the probability space for the theoretical probability Apply mathematical reasoning to find probabilities Use equally likely outcome assumptions Calculate theoretical probabilities systematically |
Q/A on theoretical calculation using mathematical principles
Discussions on equally likely assumptions and calculations Solving theoretical problems using systematic approaches Demonstrations using fair dice and unbiased coin examples Explaining mathematical probability using logical reasoning |
Chalk and blackboard, fair dice and coins, probability calculation aids, exercise books
|
KLB Mathematics Book Three Pg 266-268
|
|
7 | 4 |
Probability
|
Theoretical Probability
|
By the end of the
lesson, the learner
should be able to:
Calculate the probability space for the theoretical probability Apply mathematical reasoning to find probabilities Use equally likely outcome assumptions Calculate theoretical probabilities systematically |
Q/A on theoretical calculation using mathematical principles
Discussions on equally likely assumptions and calculations Solving theoretical problems using systematic approaches Demonstrations using fair dice and unbiased coin examples Explaining mathematical probability using logical reasoning |
Chalk and blackboard, fair dice and coins, probability calculation aids, exercise books
|
KLB Mathematics Book Three Pg 266-268
|
|
7 | 5 |
Probability
|
Theoretical Probability advanced
|
By the end of the
lesson, the learner
should be able to:
Calculate the probability space for the theoretical probability Apply theoretical probability to complex problems Handle multiple outcome scenarios Solve advanced theoretical problems |
Q/A on advanced theoretical applications using complex scenarios
Discussions on multiple outcome analysis using systematic methods Solving challenging theoretical problems using organized approaches Demonstrations using complex probability setups Explaining advanced theoretical concepts using detailed reasoning |
Chalk and blackboard, complex probability materials, advanced calculation aids, exercise books
|
KLB Mathematics Book Three Pg 268-270
|
|
7 | 6 |
Probability
|
Theoretical Probability applications
|
By the end of the
lesson, the learner
should be able to:
Calculate the probability space for the theoretical probability Apply theoretical concepts to real situations Solve practical probability problems Interpret results in meaningful contexts |
Q/A on practical probability using local examples
Discussions on real-world applications using community scenarios Solving application problems using theoretical methods Demonstrations using local games and practical situations Explaining practical interpretation using meaningful contexts |
Chalk and blackboard, local game examples, practical scenario materials, exercise books
|
KLB Mathematics Book Three Pg 268-270
|
|
7 | 7 |
Probability
|
Combined Events
|
By the end of the
lesson, the learner
should be able to:
Find the probability of a combined events Understand compound events and combinations Distinguish between different event types Apply basic combination rules |
Q/A on event combination using practical examples
Discussions on exclusive and inclusive event identification Solving basic combined event problems using visual methods Demonstrations using card drawing and dice rolling combinations Explaining combination principles using Venn diagrams |
Chalk and blackboard, playing cards, multiple dice, Venn diagram drawings, exercise books
|
KLB Mathematics Book Three Pg 272-273
|
|
8 | 1-2 |
Probability
|
Combined Events OR probability
|
By the end of the
lesson, the learner
should be able to:
Find the probability of a combined events Apply addition rule for OR events Calculate "A or B" probabilities Handle mutually exclusive events |
Q/A on addition rule application using systematic methods
Discussions on mutually exclusive identification and calculation Solving OR probability problems using organized approaches Demonstrations using card selection and event combination Explaining addition rule logic using Venn diagrams |
Chalk and blackboard, Venn diagram materials, card examples, exercise books
|
KLB Mathematics Book Three Pg 272-274
|
|
8 | 3 |
Probability
|
Independent Events
|
By the end of the
lesson, the learner
should be able to:
Find the probability of independent events Apply multiplication rule for independent events Calculate "A and B" probabilities Understand independence concepts |
Q/A on multiplication rule using independent event examples
Discussions on independence identification and verification Solving AND probability problems using systematic calculation Demonstrations using multiple coin tosses and dice combinations Explaining multiplication rule using logical reasoning |
Chalk and blackboard, multiple coins and dice, independence demonstration materials, exercise books
|
KLB Mathematics Book Three Pg 274-275
|
|
8 | 4 |
Probability
|
Independent Events advanced
|
By the end of the
lesson, the learner
should be able to:
Find the probability of independent events Distinguish between independent and dependent events Apply conditional probability concepts Handle complex independence scenarios |
Q/A on independence verification using mathematical methods
Discussions on dependence concepts using card drawing examples Solving dependent and independent event problems using systematic approaches Demonstrations using replacement and non-replacement scenarios Explaining conditional probability using practical examples |
Chalk and blackboard, playing cards for replacement scenarios, multiple experimental setups, exercise books
|
KLB Mathematics Book Three Pg 276-278
|
|
8 | 5 |
Probability
|
Independent Events applications
|
By the end of the
lesson, the learner
should be able to:
Find the probability of independent events Apply independence to practical problems Solve complex multi-event scenarios Integrate independence with other concepts |
Q/A on complex event analysis using systematic problem-solving
Discussions on rule selection and application strategies Solving advanced combined problems using integrated approaches Demonstrations using complex experimental scenarios Explaining strategic problem-solving using logical analysis |
Chalk and blackboard, complex experimental materials, advanced calculation aids, exercise books
|
KLB Mathematics Book Three Pg 278-280
|
|
8 | 6 |
Probability
|
Independent Events applications
|
By the end of the
lesson, the learner
should be able to:
Find the probability of independent events Apply independence to practical problems Solve complex multi-event scenarios Integrate independence with other concepts |
Q/A on complex event analysis using systematic problem-solving
Discussions on rule selection and application strategies Solving advanced combined problems using integrated approaches Demonstrations using complex experimental scenarios Explaining strategic problem-solving using logical analysis |
Chalk and blackboard, complex experimental materials, advanced calculation aids, exercise books
|
KLB Mathematics Book Three Pg 278-280
|
|
8 | 7 |
Probability
|
Tree Diagrams
|
By the end of the
lesson, the learner
should be able to:
Draw tree diagrams to show the probability space Construct tree diagrams systematically Represent sequential events using trees Apply tree diagram methods |
Q/A on tree construction using step-by-step methods
Discussions on sequential event representation Solving basic tree diagram problems using systematic drawing Demonstrations using branching examples and visual organization Explaining tree structure using logical branching principles |
Chalk and blackboard, tree diagram templates, branching materials, exercise books
|
KLB Mathematics Book Three Pg 282
|
|
9 | 1-2 |
Probability
Compound Proportion and Rates of Work |
Tree Diagrams advanced
Compound Proportions |
By the end of the
lesson, the learner
should be able to:
Use tree diagrams to find probability Apply trees to multi-stage problems Handle complex sequential events Calculate final probabilities using trees Find the compound proportions Understand compound proportion relationships Apply compound proportion methods systematically Solve problems involving multiple variables |
Q/A on complex tree application using multi-stage examples
Discussions on replacement scenario handling Solving complex tree problems using systematic calculation Demonstrations using detailed tree constructions Explaining systematic probability calculation using tree methods Q/A on compound relationships using practical examples Discussions on multiple variable situations using local scenarios Solving compound proportion problems using systematic methods Demonstrations using business and trade examples Explaining compound proportion logic using step-by-step reasoning |
Chalk and blackboard, complex tree examples, detailed calculation aids, exercise books
Chalk and blackboard, local business examples, calculators if available, exercise books |
KLB Mathematics Book Three Pg 283-285
KLB Mathematics Book Three Pg 288-290 |
|
9 | 3 |
Compound Proportion and Rates of Work
|
Compound Proportions
|
By the end of the
lesson, the learner
should be able to:
Find the compound proportions Understand compound proportion relationships Apply compound proportion methods systematically Solve problems involving multiple variables |
Q/A on compound relationships using practical examples
Discussions on multiple variable situations using local scenarios Solving compound proportion problems using systematic methods Demonstrations using business and trade examples Explaining compound proportion logic using step-by-step reasoning |
Chalk and blackboard, local business examples, calculators if available, exercise books
|
KLB Mathematics Book Three Pg 288-290
|
|
9 | 4 |
Compound Proportion and Rates of Work
|
Compound Proportions applications
|
By the end of the
lesson, the learner
should be able to:
Find the compound proportions Apply compound proportions to complex problems Handle multi-step compound proportion scenarios Solve real-world compound proportion problems |
Q/A on advanced compound proportion using complex scenarios
Discussions on multi-variable relationships using practical contexts Solving challenging compound problems using systematic approaches Demonstrations using construction and farming examples Explaining practical applications using community-based scenarios |
Chalk and blackboard, construction/farming examples, exercise books
|
KLB Mathematics Book Three Pg 290-291
|
|
9 | 5 |
Compound Proportion and Rates of Work
|
Proportional Parts
|
By the end of the
lesson, the learner
should be able to:
Calculate the proportional parts Understand proportional division concepts Apply proportional parts to sharing problems Solve distribution problems using proportional methods |
Q/A on proportional sharing using practical examples
Discussions on fair distribution using ratio concepts Solving proportional parts problems using systematic division Demonstrations using sharing scenarios and inheritance examples Explaining proportional distribution using logical reasoning |
Chalk and blackboard, sharing demonstration materials, exercise books
|
KLB Mathematics Book Three Pg 291-293
|
|
9 | 6 |
Compound Proportion and Rates of Work
|
Proportional Parts applications
|
By the end of the
lesson, the learner
should be able to:
Calculate the proportional parts Apply proportional parts to complex sharing scenarios Handle business partnership profit sharing Solve advanced proportional distribution problems |
Q/A on complex proportional sharing using business examples
Discussions on partnership profit distribution using practical scenarios Solving advanced proportional problems using systematic methods Demonstrations using business partnership and investment examples Explaining practical applications using meaningful contexts |
Chalk and blackboard, business partnership examples, exercise books
|
KLB Mathematics Book Three Pg 291-293
|
|
9 | 7 |
Compound Proportion and Rates of Work
|
Proportional Parts applications
|
By the end of the
lesson, the learner
should be able to:
Calculate the proportional parts Apply proportional parts to complex sharing scenarios Handle business partnership profit sharing Solve advanced proportional distribution problems |
Q/A on complex proportional sharing using business examples
Discussions on partnership profit distribution using practical scenarios Solving advanced proportional problems using systematic methods Demonstrations using business partnership and investment examples Explaining practical applications using meaningful contexts |
Chalk and blackboard, business partnership examples, exercise books
|
KLB Mathematics Book Three Pg 291-293
|
|
10 | 1-2 |
Compound Proportion and Rates of Work
|
Rates of Work
Rates of Work and Mixtures |
By the end of the
lesson, the learner
should be able to:
Calculate the rate of work Understand work rate relationships Apply time-work-efficiency concepts Solve basic rate of work problems Calculate the rate of work Apply work rates to complex scenarios Handle mixture problems and combinations Solve advanced rate and mixture problems |
Q/A on work rate calculation using practical examples
Discussions on efficiency and time relationships using work scenarios Solving basic rate of work problems using systematic methods Demonstrations using construction and labor examples Explaining work rate concepts using practical work situations Q/A on advanced work rates using complex scenarios Discussions on mixture problems using practical examples Solving challenging rate and mixture problems using systematic approaches Demonstrations using cooking, construction, and manufacturing examples Explaining mixture concepts using practical applications |
Chalk and blackboard, work scenario examples, exercise books
Chalk and blackboard, mixture demonstration materials, exercise books |
KLB Mathematics Book Three Pg 294-295
KLB Mathematics Book Three Pg 295-296 |
|
10 | 3 |
Graphical Methods
|
Tables of given relations
|
By the end of the
lesson, the learner
should be able to:
Draw tables of given relations Construct organized data tables systematically Prepare data for graphical representation Understand relationship between variables |
Q/A on table construction using systematic data organization
Discussions on variable relationships using practical examples Solving table preparation problems using organized methods Demonstrations using data collection and tabulation Explaining systematic data arrangement using logical procedures |
Chalk and blackboard, ruled paper for tables, exercise books
|
KLB Mathematics Book Three Pg 299
|
|
10 | 4 |
Graphical Methods
|
Tables of given relations
|
By the end of the
lesson, the learner
should be able to:
Draw tables of given relations Construct organized data tables systematically Prepare data for graphical representation Understand relationship between variables |
Q/A on table construction using systematic data organization
Discussions on variable relationships using practical examples Solving table preparation problems using organized methods Demonstrations using data collection and tabulation Explaining systematic data arrangement using logical procedures |
Chalk and blackboard, ruled paper for tables, exercise books
|
KLB Mathematics Book Three Pg 299
|
|
10 | 5 |
Graphical Methods
|
Graphs of given relations
|
By the end of the
lesson, the learner
should be able to:
Draw graphs of given relations Plot points accurately on coordinate systems Connect points to show relationships Interpret graphs from given data |
Q/A on graph plotting using coordinate methods
Discussions on point plotting and curve drawing Solving graph construction problems using systematic plotting Demonstrations using coordinate systems and curve sketching Explaining graph interpretation using visual analysis |
Chalk and blackboard, graph paper or grids, rulers, exercise books
|
KLB Mathematics Book Three Pg 300
|
|
10 | 6 |
Graphical Methods
|
Tables and graphs integration
|
By the end of the
lesson, the learner
should be able to:
Draw tables and graphs of given relations Integrate table construction with graph plotting Analyze relationships using both methods Compare tabular and graphical representations |
Q/A on integrated table-graph construction using comprehensive methods
Discussions on data flow from tables to graphs Solving integrated problems using systematic approaches Demonstrations using complete data analysis procedures Explaining relationship analysis using combined methods |
Chalk and blackboard, graph paper, data examples, exercise books
|
KLB Mathematics Book Three Pg 299-300
|
|
10 | 7 |
Graphical Methods
|
Introduction to cubic equations
|
By the end of the
lesson, the learner
should be able to:
Draw tables of cubic functions Understand cubic equation characteristics Prepare cubic function data systematically Recognize cubic curve patterns |
Q/A on cubic function evaluation using systematic calculation
Discussions on cubic equation properties using mathematical analysis Solving cubic table preparation using organized methods Demonstrations using cubic function examples Explaining cubic characteristics using pattern recognition |
Chalk and blackboard, cubic function examples, exercise books
|
KLB Mathematics Book Three Pg 301
|
|
11 | 1-2 |
Graphical Methods
|
Graphical solution of cubic equations
|
By the end of the
lesson, the learner
should be able to:
Draw graphs of cubic equations Plot cubic curves accurately Use graphs to solve cubic equations Find roots using graphical methods |
Q/A on cubic curve plotting using systematic point plotting
Discussions on curve characteristics and root finding Solving cubic graphing problems using careful plotting Demonstrations using cubic curve construction Explaining root identification using graph analysis |
Chalk and blackboard, graph paper, cubic equation examples, exercise books
|
KLB Mathematics Book Three Pg 302-304
|
|
11 | 3 |
Graphical Methods
|
Advanced cubic solutions
|
By the end of the
lesson, the learner
should be able to:
Draw graphs of cubic equations Apply graphical methods to complex cubic problems Handle multiple root scenarios Verify solutions using graphical analysis |
Q/A on advanced cubic graphing using complex examples
Discussions on multiple root identification using graph analysis Solving challenging cubic problems using systematic methods Demonstrations using detailed cubic constructions Explaining verification methods using graphical checking |
Chalk and blackboard, advanced graph examples, exercise books
|
KLB Mathematics Book Three Pg 302-304
|
|
11 | 4 |
Graphical Methods
|
Introduction to rates of change
|
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Understand rate of change concepts Apply rate calculations to practical problems Interpret rate meanings in context |
Q/A on rate calculation using slope methods
Discussions on rate interpretation using practical examples Solving basic rate problems using systematic calculation Demonstrations using speed-time and distance examples Explaining rate concepts using practical analogies |
Chalk and blackboard, rate calculation examples, exercise books
|
KLB Mathematics Book Three Pg 304-306
|
|
11 | 5 |
Graphical Methods
|
Introduction to rates of change
|
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Understand rate of change concepts Apply rate calculations to practical problems Interpret rate meanings in context |
Q/A on rate calculation using slope methods
Discussions on rate interpretation using practical examples Solving basic rate problems using systematic calculation Demonstrations using speed-time and distance examples Explaining rate concepts using practical analogies |
Chalk and blackboard, rate calculation examples, exercise books
|
KLB Mathematics Book Three Pg 304-306
|
|
11 | 6 |
Graphical Methods
|
Average rates of change
|
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Apply average rate methods to various functions Use graphical methods for rate calculation Solve practical rate problems |
Q/A on average rate calculation using graphical methods
Discussions on rate applications using real-world scenarios Solving average rate problems using systematic approaches Demonstrations using graph-based rate calculation Explaining practical applications using meaningful contexts |
Chalk and blackboard, graph paper, rate examples, exercise books
|
KLB Mathematics Book Three Pg 304-306
|
|
11 | 7 |
Graphical Methods
|
Advanced average rates
|
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Handle complex rate scenarios Apply rates to business and scientific problems Integrate rate concepts with other topics |
Q/A on complex rate applications using advanced scenarios
Discussions on business and scientific rate applications Solving challenging rate problems using integrated methods Demonstrations using comprehensive rate examples Explaining advanced applications using detailed analysis |
Chalk and blackboard, advanced rate scenarios, exercise books
|
KLB Mathematics Book Three Pg 304-310
|
|
12 | 1-2 |
Graphical Methods
|
Introduction to instantaneous rates
|
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Understand instantaneous rate concepts Distinguish between average and instantaneous rates Apply instant rate methods |
Q/A on instantaneous rate concepts using limiting methods
Discussions on instant vs average rate differences Solving basic instantaneous rate problems Demonstrations using tangent line concepts Explaining instantaneous rate using practical examples |
Chalk and blackboard, tangent line examples, exercise books
|
KLB Mathematics Book Three Pg 310-311
|
|
12 | 3 |
Graphical Methods
|
Rate of change at an instant
|
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Apply instantaneous rate methods systematically Use graphical techniques for instant rates Solve practical instantaneous rate problems |
Q/A on instantaneous rate calculation using graphical methods
Discussions on tangent line slope interpretation Solving instantaneous rate problems using systematic approaches Demonstrations using detailed tangent constructions Explaining practical applications using real scenarios |
Chalk and blackboard, detailed graph examples, exercise books
|
KLB Mathematics Book Three Pg 310-311
|
|
12 | 4 |
Graphical Methods
|
Advanced instantaneous rates
|
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Handle complex instantaneous rate scenarios Apply instant rates to advanced problems Integrate instantaneous concepts with applications |
Q/A on advanced instantaneous applications using complex examples
Discussions on sophisticated rate problems using detailed analysis Solving challenging instantaneous problems using systematic methods Demonstrations using comprehensive rate constructions Explaining advanced applications using detailed reasoning |
Chalk and blackboard, advanced rate examples, exercise books
|
KLB Mathematics Book Three Pg 310-315
|
|
12 | 5 |
Graphical Methods
|
Empirical graphs
|
By the end of the
lesson, the learner
should be able to:
Draw the empirical graphs Understand empirical data representation Plot experimental data systematically Analyze empirical relationships |
Q/A on empirical data plotting using experimental examples
Discussions on real data representation using practical scenarios Solving empirical graphing problems using systematic methods Demonstrations using experimental data examples Explaining empirical analysis using practical interpretations |
Chalk and blackboard, experimental data examples, exercise books
|
KLB Mathematics Book Three Pg 315-316
|
|
12 | 6 |
Graphical Methods
|
Empirical graphs
|
By the end of the
lesson, the learner
should be able to:
Draw the empirical graphs Understand empirical data representation Plot experimental data systematically Analyze empirical relationships |
Q/A on empirical data plotting using experimental examples
Discussions on real data representation using practical scenarios Solving empirical graphing problems using systematic methods Demonstrations using experimental data examples Explaining empirical analysis using practical interpretations |
Chalk and blackboard, experimental data examples, exercise books
|
KLB Mathematics Book Three Pg 315-316
|
|
12 | 7 |
Graphical Methods
|
Advanced empirical methods
|
By the end of the
lesson, the learner
should be able to:
Draw the empirical graphs Apply empirical methods to complex data Handle large datasets and trends Interpret empirical results meaningfully |
Q/A on advanced empirical techniques using complex datasets
Discussions on trend analysis using systematic methods Solving challenging empirical problems using organized approaches Demonstrations using comprehensive data analysis Explaining advanced interpretations using detailed reasoning |
Chalk and blackboard, complex data examples, exercise books
|
KLB Mathematics Book Three Pg 315-321
|
Your Name Comes Here