Home






SCHEME OF WORK
Mathematics
Form 3 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1 3
Trigonometry III
Review of Basic Trigonometric Ratios
Deriving the Identity sin²θ + cos²θ = 1
By the end of the lesson, the learner should be able to:

-Recall sin, cos, tan from right-angled triangles
-Apply Pythagoras theorem with trigonometry
-Use basic trigonometric ratios to solve problems
-Establish relationship between trigonometric ratios

-Review right-angled triangle ratios from Form 2
-Practice calculating unknown sides and angles
-Work through examples using SOH-CAH-TOA
-Solve simple practical problems
Exercise books
-Manila paper
-Rulers
-Calculators (if available)
-Unit circle diagrams
-Calculators
KLB Secondary Mathematics Form 4, Pages 99-103
1 4
Trigonometry III
Applications of sin²θ + cos²θ = 1
Additional Trigonometric Identities
By the end of the lesson, the learner should be able to:

-Solve problems using the fundamental identity
-Find missing trigonometric ratios given one ratio
-Apply identity to simplify trigonometric expressions
-Use identity in geometric problem solving

-Work through examples finding cos when sin is given
-Practice simplifying complex trigonometric expressions
-Solve problems involving unknown angles
-Apply to real-world navigation problems
Exercise books
-Manila paper
-Trigonometric tables
-Real-world examples
-Identity reference sheet
-Calculators
KLB Secondary Mathematics Form 4, Pages 99-103
1 5
Trigonometry III
Introduction to Waves
By the end of the lesson, the learner should be able to:

-Define amplitude and period of waves
-Understand wave characteristics and properties
-Identify amplitude and period from graphs
-Connect waves to trigonometric functions

-Use physical demonstrations with string/rope
-Draw simple wave patterns on manila paper
-Measure amplitude and period from wave diagrams
-Discuss real-world wave examples (sound, light)
Exercise books
-Manila paper
-String/rope
-Wave diagrams
KLB Secondary Mathematics Form 4, Pages 103-109
1 6
Trigonometry III
Sine and Cosine Waves
Transformations of Sine Waves
By the end of the lesson, the learner should be able to:

-Plot graphs of y = sin x and y = cos x
-Identify amplitude and period of basic functions
-Compare sine and cosine wave patterns
-Read values from trigonometric graphs

-Plot sin x and cos x on same axes using manila paper
-Mark key points (0°, 90°, 180°, 270°, 360°)
-Measure and compare wave characteristics
-Practice reading values from completed graphs
Exercise books
-Manila paper
-Rulers
-Graph paper (if available)
-Colored pencils
KLB Secondary Mathematics Form 4, Pages 103-109
1 7
Trigonometry III
Period Changes in Trigonometric Functions
Combined Amplitude and Period Transformations
By the end of the lesson, the learner should be able to:

-Understand effect of coefficient on period
-Plot graphs of y = sin(bx) for different values of b
-Calculate periods of transformed functions
-Apply period changes to cyclical phenomena

-Plot y = sin(2x), y = sin(x/2) on manila paper
-Compare periods with y = sin x
-Calculate period using formula 360°/b
-Apply to frequency and musical pitch examples
Exercise books
-Manila paper
-Rulers
-Period calculation charts
-Transformation examples
KLB Secondary Mathematics Form 4, Pages 103-109
2 1
Trigonometry III
Phase Angles and Wave Shifts
By the end of the lesson, the learner should be able to:

-Understand concept of phase angle
-Plot graphs of y = sin(x + θ) functions
-Identify horizontal shifts in wave patterns
-Apply phase differences to wave analysis

-Plot y = sin(x + 45°), y = sin(x - 30°)
-Demonstrate horizontal shifting of waves
-Compare leading and lagging waves
-Apply to electrical circuits or sound waves
Exercise books
-Manila paper
-Colored pencils
-Phase shift examples
KLB Secondary Mathematics Form 4, Pages 103-109
2 2
Trigonometry III
General Trigonometric Functions
Cosine Wave Transformations
By the end of the lesson, the learner should be able to:

-Work with y = a sin(bx + c) functions
-Identify amplitude, period, and phase angle
-Plot complex trigonometric functions
-Solve problems involving all transformations

-Plot y = 2 sin(3x + 60°) step by step
-Identify all transformation parameters
-Practice reading values from complex waves
-Apply to real-world periodic phenomena
Exercise books
-Manila paper
-Rulers
-Complex function examples
-Temperature data
KLB Secondary Mathematics Form 4, Pages 103-109
2 3
Trigonometry III
Introduction to Trigonometric Equations
Solving Basic Trigonometric Equations
By the end of the lesson, the learner should be able to:

-Understand concept of trigonometric equations
-Identify that trig equations have multiple solutions
-Solve simple equations like sin x = 0.5
-Find all solutions in given ranges

-Demonstrate using unit circle or graphs
-Show why sin x = 0.5 has multiple solutions
-Practice finding principal values
-Use graphs to identify all solutions in range
Exercise books
-Manila paper
-Unit circle diagrams
-Trigonometric tables
-Calculators
-Solution worksheets
KLB Secondary Mathematics Form 4, Pages 109-112
2 4
Trigonometry III
Quadratic Trigonometric Equations
By the end of the lesson, the learner should be able to:

-Solve equations like sin²x - sin x = 0
-Apply factoring techniques to trigonometric equations
-Use substitution methods for complex equations
-Find all solutions systematically

-Demonstrate substitution method (let y = sin x)
-Factor quadratic expressions in trigonometry
-Solve resulting quadratic equations
-Back-substitute to find angle solutions
Exercise books
-Manila paper
-Factoring techniques
-Substitution examples
KLB Secondary Mathematics Form 4, Pages 109-112
2 5
Trigonometry III
Equations Involving Multiple Angles
Using Graphs to Solve Trigonometric Equations
By the end of the lesson, the learner should be able to:

-Solve equations like sin(2x) = 0.5
-Handle double and triple angle cases
-Find solutions for compound angle equations
-Apply to periodic motion problems

-Work through sin(2x) = 0.5 systematically
-Show relationship between 2x solutions and x solutions
-Practice with cos(3x) and tan(x/2) equations
-Apply to pendulum and rotation problems
Exercise books
-Manila paper
-Multiple angle examples
-Real applications
-Rulers
-Graphing examples
KLB Secondary Mathematics Form 4, Pages 109-112
2 6
Trigonometry III
Trigonometry (II)
Trigonometric Equations with Identities
The unit circle
By the end of the lesson, the learner should be able to:

-Use trigonometric identities to solve equations
-Apply sin²θ + cos²θ = 1 in equation solving
-Convert between different trigonometric functions
-Solve equations using multiple identities

-Solve equations using fundamental identity
-Convert tan equations to sin/cos form
-Practice identity-based equation solving
-Work through complex multi-step problems
Exercise books
-Manila paper
-Identity reference sheets
-Complex examples
Calculators, protractors, rulers, pair of compasses
KLB Secondary Mathematics Form 4, Pages 109-112
2 7
Trigonometry (II)
The unit circle
By the end of the lesson, the learner should be able to:
Solve problems using the unit circle
Apply unit circle to find trigonometric values
Use unit circle for angle measurement
Q/A on unit circle mastery
Discussions on practical applications
Solving trigonometric problems
Demonstrations of value finding
Explaining angle relationships
Calculators, protractors, rulers, pair of compasses
KLB Mathematics Book Three Pg 43-44
3 1
Trigonometry (II)
Trigonometric ratios of angles greater than 90°
By the end of the lesson, the learner should be able to:
Find the trigonometric values of angles
Calculate trigonometric ratios for obtuse angles
Apply reference angle concepts
Q/A on basic trigonometric ratios
Discussions on angle extensions
Solving obtuse angle problems
Demonstrations of reference angles
Explaining quadrant relationships
Calculators, protractors, rulers, pair of compasses
Calculators, quadrant charts
KLB Mathematics Book Three Pg 44-45
3 2
Trigonometry (II)
Trigonometric ratios of negative angles
Trigonometric ratios of angles greater than 360°
By the end of the lesson, the learner should be able to:
Find the trigonometric values of negative angles
Apply negative angle identities
Solve problems involving negative angles
Q/A on negative angle concepts
Discussions on angle direction
Solving negative angle problems
Demonstrations of identity applications
Explaining clockwise rotations
Geoboards, graph books, calculators
KLB Mathematics Book Three Pg 48-49
3 3
Trigonometry (II)
Use of mathematical tables
By the end of the lesson, the learner should be able to:
Use mathematical tables to find sine and cosine
Read trigonometric tables accurately
Apply table interpolation methods
Q/A on table reading skills
Discussions on table structure
Solving problems using tables
Demonstrations of interpolation
Explaining table accuracy
Mathematical tables, calculators
KLB Mathematics Book Three Pg 51-55
3 4
Trigonometry (II)
Use of mathematical tables
Use of calculators
By the end of the lesson, the learner should be able to:
Use mathematical tables to find tan
Apply tables for all trigonometric functions
Compare table and calculator results
Q/A on tangent table usage
Discussions on function relationships
Solving comprehensive table problems
Demonstrations of result verification
Explaining table limitations
Mathematical tables, calculators
Calculators, function guides
KLB Mathematics Book Three Pg 55-56
3 5
Trigonometry (II)
Radian measure
Simple trigonometric graphs
By the end of the lesson, the learner should be able to:
Convert degrees to radians and vice versa
Apply radian measure in calculations
Understand radian-degree relationships
Q/A on angle measurement systems
Discussions on radian concepts
Solving conversion problems
Demonstrations of conversion methods
Explaining radian applications
Calculators, conversion charts
Calculators, graph papers, plotting guides
KLB Mathematics Book Three Pg 58-61
3 6
Trigonometry (II)
Graphs of cosines
By the end of the lesson, the learner should be able to:
Draw tables for cosine of values
Plot graphs of cosine functions
Compare sine and cosine graphs
Q/A on cosine properties
Discussions on graph relationships
Solving cosine graphing problems
Demonstrations of cosine plotting
Explaining phase relationships
Calculators, graph papers, plotting guides
KLB Mathematics Book Three Pg 63-64
3 7
Trigonometry (II)
Graphs of tan
The sine rule
By the end of the lesson, the learner should be able to:
Draw tables for tan of values
Plot graphs of tan functions
Identify asymptotes and discontinuities
Q/A on tangent behavior
Discussions on function domains
Solving tangent graphing problems
Demonstrations of asymptote identification
Explaining discontinuous functions
Calculators, graph papers, plotting guides
Calculators, triangle worksheets
KLB Mathematics Book Three Pg 64-65
4 1
Trigonometry (II)
Cosine rule
Problem solving
By the end of the lesson, the learner should be able to:
State the cosine rule
Apply cosine rule to find solution of triangles
Choose appropriate rule for triangle solving
Q/A on cosine rule concepts
Discussions on rule selection
Solving complex triangle problems
Demonstrations of cosine rule
Explaining when to use each rule
Calculators, triangle worksheets
Calculators, comprehensive problem sets, real-world examples
KLB Mathematics Book Three Pg 71-75
4 2
Circles: Chords and Tangents
Length of an arc
By the end of the lesson, the learner should be able to:
Calculate the length of an arc
Apply arc length formula
Understand arc-radius relationships
Q/A on circle properties and terminology
Discussions on arc measurement concepts
Solving basic arc length problems
Demonstrations of formula application
Explaining arc-angle relationships
Geometrical set, calculators
KLB Mathematics Book Three Pg 124-125
4 3
Circles: Chords and Tangents
Length of an arc
Chords
By the end of the lesson, the learner should be able to:
Calculate the length of an arc
Solve complex arc length problems
Apply arc concepts to real situations
Q/A on advanced arc applications
Discussions on practical arc measurements
Solving complex arc problems
Demonstrations of real-world applications
Explaining engineering and design uses
Geometrical set, calculators
KLB Mathematics Book Three Pg 124-125
4 4
Circles: Chords and Tangents
Parallel chords
By the end of the lesson, the learner should be able to:
Calculate the perpendicular bisector
Find the value of parallel chords
Apply parallel chord properties
Q/A on parallel chord concepts
Discussions on perpendicular bisector properties
Solving parallel chord problems
Demonstrations of construction techniques
Explaining geometric relationships
Geometrical set, calculators
KLB Mathematics Book Three Pg 129-131
4 5
Circles: Chords and Tangents
Equal chords
Intersecting chords
By the end of the lesson, the learner should be able to:
Find the length of equal chords
Apply equal chord theorems
Solve equal chord problems
Q/A on equal chord properties
Discussions on chord equality conditions
Solving equal chord problems
Demonstrations of proof techniques
Explaining theoretical foundations
Geometrical set, calculators
KLB Mathematics Book Three Pg 131-132
4 6
Circles: Chords and Tangents
Intersecting chords
Chord properties
By the end of the lesson, the learner should be able to:
Calculate the length of intersecting chords
Solve complex intersection problems
Apply advanced chord theorems
Q/A on advanced intersection scenarios
Discussions on complex chord relationships
Solving challenging intersection problems
Demonstrations of advanced techniques
Explaining sophisticated applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 135-139
4 7
Circles: Chords and Tangents
Tangent to a circle
By the end of the lesson, the learner should be able to:
Construct a tangent to a circle
Understand tangent properties
Apply tangent construction methods
Q/A on tangent definition and properties
Discussions on tangent construction
Solving basic tangent problems
Demonstrations of construction techniques
Explaining tangent characteristics
Geometrical set, calculators
KLB Mathematics Book Three Pg 139-140
5

Mid term exams

6 1
Circles: Chords and Tangents
Tangent to a circle
Properties of tangents to a circle from an external point
By the end of the lesson, the learner should be able to:
Calculate the length of tangent
Calculate the angle between tangents
Apply tangent measurement techniques
Q/A on tangent calculations
Discussions on tangent measurement
Solving tangent calculation problems
Demonstrations of measurement methods
Explaining tangent applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 141-142
6 2
Circles: Chords and Tangents
Tangent properties
Tangents to two circles
By the end of the lesson, the learner should be able to:
Solve comprehensive tangent problems
Apply all tangent concepts
Integrate tangent knowledge systematically
Q/A on comprehensive tangent mastery
Discussions on integrated applications
Solving mixed tangent problems
Demonstrations of complete understanding
Explaining systematic problem-solving
Geometrical set, calculators
KLB Mathematics Book Three Pg 139-147
6 3
Circles: Chords and Tangents
Tangents to two circles
By the end of the lesson, the learner should be able to:
Calculate the tangents of transverse common tangents
Find transverse tangent properties
Compare direct and transverse tangents
Q/A on transverse tangent concepts
Discussions on tangent type differences
Solving transverse tangent problems
Demonstrations of comparison methods
Explaining tangent classifications
Geometrical set, calculators
KLB Mathematics Book Three Pg 150-151
6 4
Circles: Chords and Tangents
Contact of circles
By the end of the lesson, the learner should be able to:
Calculate the radii of contact circles
Understand internal contact properties
Apply contact circle concepts
Q/A on circle contact concepts
Discussions on internal contact properties
Solving internal contact problems
Demonstrations of contact relationships
Explaining geometric principles
Geometrical set, calculators
KLB Mathematics Book Three Pg 151-153
6 5
Circles: Chords and Tangents
Circle contact
Angle in alternate segment
By the end of the lesson, the learner should be able to:
Solve problems involving chords, tangents and contact circles
Integrate all contact concepts
Apply comprehensive contact knowledge
Q/A on comprehensive contact understanding
Discussions on integrated problem-solving
Solving complex contact problems
Demonstrations of systematic approaches
Explaining complete contact mastery
Geometrical set, calculators
KLB Mathematics Book Three Pg 154-157
6 6
Circles: Chords and Tangents
Angle in alternate segment
By the end of the lesson, the learner should be able to:
Calculate the angles in alternate segments
Solve complex segment problems
Apply advanced segment theorems
Q/A on advanced segment applications
Discussions on complex angle relationships
Solving challenging segment problems
Demonstrations of sophisticated techniques
Explaining advanced applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 160-161
6 7
Circles: Chords and Tangents
Circumscribed circle
Escribed circles
By the end of the lesson, the learner should be able to:
Construct circumscribed circles
Find circumscribed circle properties
Apply circumscription concepts
Q/A on circumscription concepts
Discussions on circumscribed circle construction
Solving circumscription problems
Demonstrations of construction techniques
Explaining circumscription applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 165
7 1
Circles: Chords and Tangents
Centroid
Orthocenter
By the end of the lesson, the learner should be able to:
Construct centroid
Find centroid properties
Apply centroid concepts
Q/A on centroid definition and properties
Discussions on centroid construction
Solving centroid problems
Demonstrations of construction techniques
Explaining centroid applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 166
7 2
Circles: Chords and Tangents
Circle and triangle relationships
By the end of the lesson, the learner should be able to:
Solve comprehensive circle-triangle problems
Integrate all circle and triangle concepts
Apply advanced geometric relationships
Q/A on comprehensive geometric understanding
Discussions on integrated relationships
Solving complex geometric problems
Demonstrations of advanced applications
Explaining sophisticated geometric principles
Geometrical set, calculators
KLB Mathematics Book Three Pg 164-167
7 3
Compound Proportion and Rates of Work
Compound Proportions
Compound Proportions applications
By the end of the lesson, the learner should be able to:
Find the compound proportions
Understand compound proportion relationships
Apply compound proportion methods systematically
Solve problems involving multiple variables
Q/A on compound relationships using practical examples
Discussions on multiple variable situations using local scenarios
Solving compound proportion problems using systematic methods
Demonstrations using business and trade examples
Explaining compound proportion logic using step-by-step reasoning
Chalk and blackboard, local business examples, calculators if available, exercise books
Chalk and blackboard, construction/farming examples, exercise books
KLB Mathematics Book Three Pg 288-290
7 4
Compound Proportion and Rates of Work
Proportional Parts
Proportional Parts applications
By the end of the lesson, the learner should be able to:
Calculate the proportional parts
Understand proportional division concepts
Apply proportional parts to sharing problems
Solve distribution problems using proportional methods
Q/A on proportional sharing using practical examples
Discussions on fair distribution using ratio concepts
Solving proportional parts problems using systematic division
Demonstrations using sharing scenarios and inheritance examples
Explaining proportional distribution using logical reasoning
Chalk and blackboard, sharing demonstration materials, exercise books
Chalk and blackboard, business partnership examples, exercise books
KLB Mathematics Book Three Pg 291-293
7 5
Compound Proportion and Rates of Work
Rates of Work
By the end of the lesson, the learner should be able to:
Calculate the rate of work
Understand work rate relationships
Apply time-work-efficiency concepts
Solve basic rate of work problems
Q/A on work rate calculation using practical examples
Discussions on efficiency and time relationships using work scenarios
Solving basic rate of work problems using systematic methods
Demonstrations using construction and labor examples
Explaining work rate concepts using practical work situations
Chalk and blackboard, work scenario examples, exercise books
KLB Mathematics Book Three Pg 294-295
7 6
Compound Proportion and Rates of Work
Graphical Methods
Rates of Work and Mixtures
Tables of given relations
By the end of the lesson, the learner should be able to:
Calculate the rate of work
Apply work rates to complex scenarios
Handle mixture problems and combinations
Solve advanced rate and mixture problems
Q/A on advanced work rates using complex scenarios
Discussions on mixture problems using practical examples
Solving challenging rate and mixture problems using systematic approaches
Demonstrations using cooking, construction, and manufacturing examples
Explaining mixture concepts using practical applications
Chalk and blackboard, mixture demonstration materials, exercise books
Chalk and blackboard, ruled paper for tables, exercise books
KLB Mathematics Book Three Pg 295-296
7 7
Graphical Methods
Graphs of given relations
Tables and graphs integration
By the end of the lesson, the learner should be able to:
Draw graphs of given relations
Plot points accurately on coordinate systems
Connect points to show relationships
Interpret graphs from given data
Q/A on graph plotting using coordinate methods
Discussions on point plotting and curve drawing
Solving graph construction problems using systematic plotting
Demonstrations using coordinate systems and curve sketching
Explaining graph interpretation using visual analysis
Chalk and blackboard, graph paper or grids, rulers, exercise books
Chalk and blackboard, graph paper, data examples, exercise books
KLB Mathematics Book Three Pg 300
8 1
Graphical Methods
Introduction to cubic equations
By the end of the lesson, the learner should be able to:
Draw tables of cubic functions
Understand cubic equation characteristics
Prepare cubic function data systematically
Recognize cubic curve patterns
Q/A on cubic function evaluation using systematic calculation
Discussions on cubic equation properties using mathematical analysis
Solving cubic table preparation using organized methods
Demonstrations using cubic function examples
Explaining cubic characteristics using pattern recognition
Chalk and blackboard, cubic function examples, exercise books
KLB Mathematics Book Three Pg 301
8 2
Graphical Methods
Graphical solution of cubic equations
Advanced cubic solutions
By the end of the lesson, the learner should be able to:
Draw graphs of cubic equations
Plot cubic curves accurately
Use graphs to solve cubic equations
Find roots using graphical methods
Q/A on cubic curve plotting using systematic point plotting
Discussions on curve characteristics and root finding
Solving cubic graphing problems using careful plotting
Demonstrations using cubic curve construction
Explaining root identification using graph analysis
Chalk and blackboard, graph paper, cubic equation examples, exercise books
Chalk and blackboard, advanced graph examples, exercise books
KLB Mathematics Book Three Pg 302-304
8 3
Graphical Methods
Introduction to rates of change
Average rates of change
By the end of the lesson, the learner should be able to:
Calculate the average rates of change
Understand rate of change concepts
Apply rate calculations to practical problems
Interpret rate meanings in context
Q/A on rate calculation using slope methods
Discussions on rate interpretation using practical examples
Solving basic rate problems using systematic calculation
Demonstrations using speed-time and distance examples
Explaining rate concepts using practical analogies
Chalk and blackboard, rate calculation examples, exercise books
Chalk and blackboard, graph paper, rate examples, exercise books
KLB Mathematics Book Three Pg 304-306
8 4
Graphical Methods
Advanced average rates
By the end of the lesson, the learner should be able to:
Calculate the average rates of change
Handle complex rate scenarios
Apply rates to business and scientific problems
Integrate rate concepts with other topics
Q/A on complex rate applications using advanced scenarios
Discussions on business and scientific rate applications
Solving challenging rate problems using integrated methods
Demonstrations using comprehensive rate examples
Explaining advanced applications using detailed analysis
Chalk and blackboard, advanced rate scenarios, exercise books
KLB Mathematics Book Three Pg 304-310
8 5
Graphical Methods
Introduction to instantaneous rates
Rate of change at an instant
By the end of the lesson, the learner should be able to:
Calculate the rate of change at an instant
Understand instantaneous rate concepts
Distinguish between average and instantaneous rates
Apply instant rate methods
Q/A on instantaneous rate concepts using limiting methods
Discussions on instant vs average rate differences
Solving basic instantaneous rate problems
Demonstrations using tangent line concepts
Explaining instantaneous rate using practical examples
Chalk and blackboard, tangent line examples, exercise books
Chalk and blackboard, detailed graph examples, exercise books
KLB Mathematics Book Three Pg 310-311
8 6
Graphical Methods
Advanced instantaneous rates
Empirical graphs
By the end of the lesson, the learner should be able to:
Calculate the rate of change at an instant
Handle complex instantaneous rate scenarios
Apply instant rates to advanced problems
Integrate instantaneous concepts with applications
Q/A on advanced instantaneous applications using complex examples
Discussions on sophisticated rate problems using detailed analysis
Solving challenging instantaneous problems using systematic methods
Demonstrations using comprehensive rate constructions
Explaining advanced applications using detailed reasoning
Chalk and blackboard, advanced rate examples, exercise books
Chalk and blackboard, experimental data examples, exercise books
KLB Mathematics Book Three Pg 310-315
8 7
Graphical Methods
Advanced empirical methods
By the end of the lesson, the learner should be able to:
Draw the empirical graphs
Apply empirical methods to complex data
Handle large datasets and trends
Interpret empirical results meaningfully
Q/A on advanced empirical techniques using complex datasets
Discussions on trend analysis using systematic methods
Solving challenging empirical problems using organized approaches
Demonstrations using comprehensive data analysis
Explaining advanced interpretations using detailed reasoning
Chalk and blackboard, complex data examples, exercise books
KLB Mathematics Book Three Pg 315-321
9

End term exams


Your Name Comes Here


Download

Feedback