If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 | 3 |
Trigonometry III
|
Review of Basic Trigonometric Ratios
Deriving the Identity sin²θ + cos²θ = 1 |
By the end of the
lesson, the learner
should be able to:
-Recall sin, cos, tan from right-angled triangles -Apply Pythagoras theorem with trigonometry -Use basic trigonometric ratios to solve problems -Establish relationship between trigonometric ratios |
-Review right-angled triangle ratios from Form 2 -Practice calculating unknown sides and angles -Work through examples using SOH-CAH-TOA -Solve simple practical problems |
Exercise books
-Manila paper -Rulers -Calculators (if available) -Unit circle diagrams -Calculators |
KLB Secondary Mathematics Form 4, Pages 99-103
|
|
1 | 4 |
Trigonometry III
|
Applications of sin²θ + cos²θ = 1
Additional Trigonometric Identities |
By the end of the
lesson, the learner
should be able to:
-Solve problems using the fundamental identity -Find missing trigonometric ratios given one ratio -Apply identity to simplify trigonometric expressions -Use identity in geometric problem solving |
-Work through examples finding cos when sin is given -Practice simplifying complex trigonometric expressions -Solve problems involving unknown angles -Apply to real-world navigation problems |
Exercise books
-Manila paper -Trigonometric tables -Real-world examples -Identity reference sheet -Calculators |
KLB Secondary Mathematics Form 4, Pages 99-103
|
|
1 | 5 |
Trigonometry III
|
Introduction to Waves
|
By the end of the
lesson, the learner
should be able to:
-Define amplitude and period of waves -Understand wave characteristics and properties -Identify amplitude and period from graphs -Connect waves to trigonometric functions |
-Use physical demonstrations with string/rope -Draw simple wave patterns on manila paper -Measure amplitude and period from wave diagrams -Discuss real-world wave examples (sound, light) |
Exercise books
-Manila paper -String/rope -Wave diagrams |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
1 | 6 |
Trigonometry III
|
Sine and Cosine Waves
Transformations of Sine Waves |
By the end of the
lesson, the learner
should be able to:
-Plot graphs of y = sin x and y = cos x -Identify amplitude and period of basic functions -Compare sine and cosine wave patterns -Read values from trigonometric graphs |
-Plot sin x and cos x on same axes using manila paper -Mark key points (0°, 90°, 180°, 270°, 360°) -Measure and compare wave characteristics -Practice reading values from completed graphs |
Exercise books
-Manila paper -Rulers -Graph paper (if available) -Colored pencils |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
1 | 7 |
Trigonometry III
|
Period Changes in Trigonometric Functions
Combined Amplitude and Period Transformations |
By the end of the
lesson, the learner
should be able to:
-Understand effect of coefficient on period -Plot graphs of y = sin(bx) for different values of b -Calculate periods of transformed functions -Apply period changes to cyclical phenomena |
-Plot y = sin(2x), y = sin(x/2) on manila paper -Compare periods with y = sin x -Calculate period using formula 360°/b -Apply to frequency and musical pitch examples |
Exercise books
-Manila paper -Rulers -Period calculation charts -Transformation examples |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
2 | 1 |
Trigonometry III
|
Phase Angles and Wave Shifts
|
By the end of the
lesson, the learner
should be able to:
-Understand concept of phase angle -Plot graphs of y = sin(x + θ) functions -Identify horizontal shifts in wave patterns -Apply phase differences to wave analysis |
-Plot y = sin(x + 45°), y = sin(x - 30°) -Demonstrate horizontal shifting of waves -Compare leading and lagging waves -Apply to electrical circuits or sound waves |
Exercise books
-Manila paper -Colored pencils -Phase shift examples |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
2 | 2 |
Trigonometry III
|
General Trigonometric Functions
Cosine Wave Transformations |
By the end of the
lesson, the learner
should be able to:
-Work with y = a sin(bx + c) functions -Identify amplitude, period, and phase angle -Plot complex trigonometric functions -Solve problems involving all transformations |
-Plot y = 2 sin(3x + 60°) step by step -Identify all transformation parameters -Practice reading values from complex waves -Apply to real-world periodic phenomena |
Exercise books
-Manila paper -Rulers -Complex function examples -Temperature data |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
2 | 3 |
Trigonometry III
|
Introduction to Trigonometric Equations
Solving Basic Trigonometric Equations |
By the end of the
lesson, the learner
should be able to:
-Understand concept of trigonometric equations -Identify that trig equations have multiple solutions -Solve simple equations like sin x = 0.5 -Find all solutions in given ranges |
-Demonstrate using unit circle or graphs -Show why sin x = 0.5 has multiple solutions -Practice finding principal values -Use graphs to identify all solutions in range |
Exercise books
-Manila paper -Unit circle diagrams -Trigonometric tables -Calculators -Solution worksheets |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
2 | 4 |
Trigonometry III
|
Quadratic Trigonometric Equations
|
By the end of the
lesson, the learner
should be able to:
-Solve equations like sin²x - sin x = 0 -Apply factoring techniques to trigonometric equations -Use substitution methods for complex equations -Find all solutions systematically |
-Demonstrate substitution method (let y = sin x) -Factor quadratic expressions in trigonometry -Solve resulting quadratic equations -Back-substitute to find angle solutions |
Exercise books
-Manila paper -Factoring techniques -Substitution examples |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
2 | 5 |
Trigonometry III
|
Equations Involving Multiple Angles
Using Graphs to Solve Trigonometric Equations |
By the end of the
lesson, the learner
should be able to:
-Solve equations like sin(2x) = 0.5 -Handle double and triple angle cases -Find solutions for compound angle equations -Apply to periodic motion problems |
-Work through sin(2x) = 0.5 systematically -Show relationship between 2x solutions and x solutions -Practice with cos(3x) and tan(x/2) equations -Apply to pendulum and rotation problems |
Exercise books
-Manila paper -Multiple angle examples -Real applications -Rulers -Graphing examples |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
2 | 6 |
Trigonometry III
Trigonometry (II) |
Trigonometric Equations with Identities
The unit circle |
By the end of the
lesson, the learner
should be able to:
-Use trigonometric identities to solve equations -Apply sin²θ + cos²θ = 1 in equation solving -Convert between different trigonometric functions -Solve equations using multiple identities |
-Solve equations using fundamental identity -Convert tan equations to sin/cos form -Practice identity-based equation solving -Work through complex multi-step problems |
Exercise books
-Manila paper -Identity reference sheets -Complex examples Calculators, protractors, rulers, pair of compasses |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
2 | 7 |
Trigonometry (II)
|
The unit circle
|
By the end of the
lesson, the learner
should be able to:
Solve problems using the unit circle Apply unit circle to find trigonometric values Use unit circle for angle measurement |
Q/A on unit circle mastery
Discussions on practical applications Solving trigonometric problems Demonstrations of value finding Explaining angle relationships |
Calculators, protractors, rulers, pair of compasses
|
KLB Mathematics Book Three Pg 43-44
|
|
3 | 1 |
Trigonometry (II)
|
Trigonometric ratios of angles greater than 90°
|
By the end of the
lesson, the learner
should be able to:
Find the trigonometric values of angles Calculate trigonometric ratios for obtuse angles Apply reference angle concepts |
Q/A on basic trigonometric ratios
Discussions on angle extensions Solving obtuse angle problems Demonstrations of reference angles Explaining quadrant relationships |
Calculators, protractors, rulers, pair of compasses
Calculators, quadrant charts |
KLB Mathematics Book Three Pg 44-45
|
|
3 | 2 |
Trigonometry (II)
|
Trigonometric ratios of negative angles
Trigonometric ratios of angles greater than 360° |
By the end of the
lesson, the learner
should be able to:
Find the trigonometric values of negative angles Apply negative angle identities Solve problems involving negative angles |
Q/A on negative angle concepts
Discussions on angle direction Solving negative angle problems Demonstrations of identity applications Explaining clockwise rotations |
Geoboards, graph books, calculators
|
KLB Mathematics Book Three Pg 48-49
|
|
3 | 3 |
Trigonometry (II)
|
Use of mathematical tables
|
By the end of the
lesson, the learner
should be able to:
Use mathematical tables to find sine and cosine Read trigonometric tables accurately Apply table interpolation methods |
Q/A on table reading skills
Discussions on table structure Solving problems using tables Demonstrations of interpolation Explaining table accuracy |
Mathematical tables, calculators
|
KLB Mathematics Book Three Pg 51-55
|
|
3 | 4 |
Trigonometry (II)
|
Use of mathematical tables
Use of calculators |
By the end of the
lesson, the learner
should be able to:
Use mathematical tables to find tan Apply tables for all trigonometric functions Compare table and calculator results |
Q/A on tangent table usage
Discussions on function relationships Solving comprehensive table problems Demonstrations of result verification Explaining table limitations |
Mathematical tables, calculators
Calculators, function guides |
KLB Mathematics Book Three Pg 55-56
|
|
3 | 5 |
Trigonometry (II)
|
Radian measure
Simple trigonometric graphs |
By the end of the
lesson, the learner
should be able to:
Convert degrees to radians and vice versa Apply radian measure in calculations Understand radian-degree relationships |
Q/A on angle measurement systems
Discussions on radian concepts Solving conversion problems Demonstrations of conversion methods Explaining radian applications |
Calculators, conversion charts
Calculators, graph papers, plotting guides |
KLB Mathematics Book Three Pg 58-61
|
|
3 | 6 |
Trigonometry (II)
|
Graphs of cosines
|
By the end of the
lesson, the learner
should be able to:
Draw tables for cosine of values Plot graphs of cosine functions Compare sine and cosine graphs |
Q/A on cosine properties
Discussions on graph relationships Solving cosine graphing problems Demonstrations of cosine plotting Explaining phase relationships |
Calculators, graph papers, plotting guides
|
KLB Mathematics Book Three Pg 63-64
|
|
3 | 7 |
Trigonometry (II)
|
Graphs of tan
The sine rule |
By the end of the
lesson, the learner
should be able to:
Draw tables for tan of values Plot graphs of tan functions Identify asymptotes and discontinuities |
Q/A on tangent behavior
Discussions on function domains Solving tangent graphing problems Demonstrations of asymptote identification Explaining discontinuous functions |
Calculators, graph papers, plotting guides
Calculators, triangle worksheets |
KLB Mathematics Book Three Pg 64-65
|
|
4 | 1 |
Trigonometry (II)
|
Cosine rule
Problem solving |
By the end of the
lesson, the learner
should be able to:
State the cosine rule Apply cosine rule to find solution of triangles Choose appropriate rule for triangle solving |
Q/A on cosine rule concepts
Discussions on rule selection Solving complex triangle problems Demonstrations of cosine rule Explaining when to use each rule |
Calculators, triangle worksheets
Calculators, comprehensive problem sets, real-world examples |
KLB Mathematics Book Three Pg 71-75
|
|
4 | 2 |
Circles: Chords and Tangents
|
Length of an arc
|
By the end of the
lesson, the learner
should be able to:
Calculate the length of an arc Apply arc length formula Understand arc-radius relationships |
Q/A on circle properties and terminology
Discussions on arc measurement concepts Solving basic arc length problems Demonstrations of formula application Explaining arc-angle relationships |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 124-125
|
|
4 | 3 |
Circles: Chords and Tangents
|
Length of an arc
Chords |
By the end of the
lesson, the learner
should be able to:
Calculate the length of an arc Solve complex arc length problems Apply arc concepts to real situations |
Q/A on advanced arc applications
Discussions on practical arc measurements Solving complex arc problems Demonstrations of real-world applications Explaining engineering and design uses |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 124-125
|
|
4 | 4 |
Circles: Chords and Tangents
|
Parallel chords
|
By the end of the
lesson, the learner
should be able to:
Calculate the perpendicular bisector Find the value of parallel chords Apply parallel chord properties |
Q/A on parallel chord concepts
Discussions on perpendicular bisector properties Solving parallel chord problems Demonstrations of construction techniques Explaining geometric relationships |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 129-131
|
|
4 | 5 |
Circles: Chords and Tangents
|
Equal chords
Intersecting chords |
By the end of the
lesson, the learner
should be able to:
Find the length of equal chords Apply equal chord theorems Solve equal chord problems |
Q/A on equal chord properties
Discussions on chord equality conditions Solving equal chord problems Demonstrations of proof techniques Explaining theoretical foundations |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 131-132
|
|
4 | 6 |
Circles: Chords and Tangents
|
Intersecting chords
Chord properties |
By the end of the
lesson, the learner
should be able to:
Calculate the length of intersecting chords Solve complex intersection problems Apply advanced chord theorems |
Q/A on advanced intersection scenarios
Discussions on complex chord relationships Solving challenging intersection problems Demonstrations of advanced techniques Explaining sophisticated applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 135-139
|
|
4 | 7 |
Circles: Chords and Tangents
|
Tangent to a circle
|
By the end of the
lesson, the learner
should be able to:
Construct a tangent to a circle Understand tangent properties Apply tangent construction methods |
Q/A on tangent definition and properties
Discussions on tangent construction Solving basic tangent problems Demonstrations of construction techniques Explaining tangent characteristics |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 139-140
|
|
5 |
Mid term exams |
|||||||
6 | 1 |
Circles: Chords and Tangents
|
Tangent to a circle
Properties of tangents to a circle from an external point |
By the end of the
lesson, the learner
should be able to:
Calculate the length of tangent Calculate the angle between tangents Apply tangent measurement techniques |
Q/A on tangent calculations
Discussions on tangent measurement Solving tangent calculation problems Demonstrations of measurement methods Explaining tangent applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 141-142
|
|
6 | 2 |
Circles: Chords and Tangents
|
Tangent properties
Tangents to two circles |
By the end of the
lesson, the learner
should be able to:
Solve comprehensive tangent problems Apply all tangent concepts Integrate tangent knowledge systematically |
Q/A on comprehensive tangent mastery
Discussions on integrated applications Solving mixed tangent problems Demonstrations of complete understanding Explaining systematic problem-solving |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 139-147
|
|
6 | 3 |
Circles: Chords and Tangents
|
Tangents to two circles
|
By the end of the
lesson, the learner
should be able to:
Calculate the tangents of transverse common tangents Find transverse tangent properties Compare direct and transverse tangents |
Q/A on transverse tangent concepts
Discussions on tangent type differences Solving transverse tangent problems Demonstrations of comparison methods Explaining tangent classifications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 150-151
|
|
6 | 4 |
Circles: Chords and Tangents
|
Contact of circles
|
By the end of the
lesson, the learner
should be able to:
Calculate the radii of contact circles Understand internal contact properties Apply contact circle concepts |
Q/A on circle contact concepts
Discussions on internal contact properties Solving internal contact problems Demonstrations of contact relationships Explaining geometric principles |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 151-153
|
|
6 | 5 |
Circles: Chords and Tangents
|
Circle contact
Angle in alternate segment |
By the end of the
lesson, the learner
should be able to:
Solve problems involving chords, tangents and contact circles Integrate all contact concepts Apply comprehensive contact knowledge |
Q/A on comprehensive contact understanding
Discussions on integrated problem-solving Solving complex contact problems Demonstrations of systematic approaches Explaining complete contact mastery |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 154-157
|
|
6 | 6 |
Circles: Chords and Tangents
|
Angle in alternate segment
|
By the end of the
lesson, the learner
should be able to:
Calculate the angles in alternate segments Solve complex segment problems Apply advanced segment theorems |
Q/A on advanced segment applications
Discussions on complex angle relationships Solving challenging segment problems Demonstrations of sophisticated techniques Explaining advanced applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 160-161
|
|
6 | 7 |
Circles: Chords and Tangents
|
Circumscribed circle
Escribed circles |
By the end of the
lesson, the learner
should be able to:
Construct circumscribed circles Find circumscribed circle properties Apply circumscription concepts |
Q/A on circumscription concepts
Discussions on circumscribed circle construction Solving circumscription problems Demonstrations of construction techniques Explaining circumscription applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 165
|
|
7 | 1 |
Circles: Chords and Tangents
|
Centroid
Orthocenter |
By the end of the
lesson, the learner
should be able to:
Construct centroid Find centroid properties Apply centroid concepts |
Q/A on centroid definition and properties
Discussions on centroid construction Solving centroid problems Demonstrations of construction techniques Explaining centroid applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 166
|
|
7 | 2 |
Circles: Chords and Tangents
|
Circle and triangle relationships
|
By the end of the
lesson, the learner
should be able to:
Solve comprehensive circle-triangle problems Integrate all circle and triangle concepts Apply advanced geometric relationships |
Q/A on comprehensive geometric understanding
Discussions on integrated relationships Solving complex geometric problems Demonstrations of advanced applications Explaining sophisticated geometric principles |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 164-167
|
|
7 | 3 |
Compound Proportion and Rates of Work
|
Compound Proportions
Compound Proportions applications |
By the end of the
lesson, the learner
should be able to:
Find the compound proportions Understand compound proportion relationships Apply compound proportion methods systematically Solve problems involving multiple variables |
Q/A on compound relationships using practical examples
Discussions on multiple variable situations using local scenarios Solving compound proportion problems using systematic methods Demonstrations using business and trade examples Explaining compound proportion logic using step-by-step reasoning |
Chalk and blackboard, local business examples, calculators if available, exercise books
Chalk and blackboard, construction/farming examples, exercise books |
KLB Mathematics Book Three Pg 288-290
|
|
7 | 4 |
Compound Proportion and Rates of Work
|
Proportional Parts
Proportional Parts applications |
By the end of the
lesson, the learner
should be able to:
Calculate the proportional parts Understand proportional division concepts Apply proportional parts to sharing problems Solve distribution problems using proportional methods |
Q/A on proportional sharing using practical examples
Discussions on fair distribution using ratio concepts Solving proportional parts problems using systematic division Demonstrations using sharing scenarios and inheritance examples Explaining proportional distribution using logical reasoning |
Chalk and blackboard, sharing demonstration materials, exercise books
Chalk and blackboard, business partnership examples, exercise books |
KLB Mathematics Book Three Pg 291-293
|
|
7 | 5 |
Compound Proportion and Rates of Work
|
Rates of Work
|
By the end of the
lesson, the learner
should be able to:
Calculate the rate of work Understand work rate relationships Apply time-work-efficiency concepts Solve basic rate of work problems |
Q/A on work rate calculation using practical examples
Discussions on efficiency and time relationships using work scenarios Solving basic rate of work problems using systematic methods Demonstrations using construction and labor examples Explaining work rate concepts using practical work situations |
Chalk and blackboard, work scenario examples, exercise books
|
KLB Mathematics Book Three Pg 294-295
|
|
7 | 6 |
Compound Proportion and Rates of Work
Graphical Methods |
Rates of Work and Mixtures
Tables of given relations |
By the end of the
lesson, the learner
should be able to:
Calculate the rate of work Apply work rates to complex scenarios Handle mixture problems and combinations Solve advanced rate and mixture problems |
Q/A on advanced work rates using complex scenarios
Discussions on mixture problems using practical examples Solving challenging rate and mixture problems using systematic approaches Demonstrations using cooking, construction, and manufacturing examples Explaining mixture concepts using practical applications |
Chalk and blackboard, mixture demonstration materials, exercise books
Chalk and blackboard, ruled paper for tables, exercise books |
KLB Mathematics Book Three Pg 295-296
|
|
7 | 7 |
Graphical Methods
|
Graphs of given relations
Tables and graphs integration |
By the end of the
lesson, the learner
should be able to:
Draw graphs of given relations Plot points accurately on coordinate systems Connect points to show relationships Interpret graphs from given data |
Q/A on graph plotting using coordinate methods
Discussions on point plotting and curve drawing Solving graph construction problems using systematic plotting Demonstrations using coordinate systems and curve sketching Explaining graph interpretation using visual analysis |
Chalk and blackboard, graph paper or grids, rulers, exercise books
Chalk and blackboard, graph paper, data examples, exercise books |
KLB Mathematics Book Three Pg 300
|
|
8 | 1 |
Graphical Methods
|
Introduction to cubic equations
|
By the end of the
lesson, the learner
should be able to:
Draw tables of cubic functions Understand cubic equation characteristics Prepare cubic function data systematically Recognize cubic curve patterns |
Q/A on cubic function evaluation using systematic calculation
Discussions on cubic equation properties using mathematical analysis Solving cubic table preparation using organized methods Demonstrations using cubic function examples Explaining cubic characteristics using pattern recognition |
Chalk and blackboard, cubic function examples, exercise books
|
KLB Mathematics Book Three Pg 301
|
|
8 | 2 |
Graphical Methods
|
Graphical solution of cubic equations
Advanced cubic solutions |
By the end of the
lesson, the learner
should be able to:
Draw graphs of cubic equations Plot cubic curves accurately Use graphs to solve cubic equations Find roots using graphical methods |
Q/A on cubic curve plotting using systematic point plotting
Discussions on curve characteristics and root finding Solving cubic graphing problems using careful plotting Demonstrations using cubic curve construction Explaining root identification using graph analysis |
Chalk and blackboard, graph paper, cubic equation examples, exercise books
Chalk and blackboard, advanced graph examples, exercise books |
KLB Mathematics Book Three Pg 302-304
|
|
8 | 3 |
Graphical Methods
|
Introduction to rates of change
Average rates of change |
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Understand rate of change concepts Apply rate calculations to practical problems Interpret rate meanings in context |
Q/A on rate calculation using slope methods
Discussions on rate interpretation using practical examples Solving basic rate problems using systematic calculation Demonstrations using speed-time and distance examples Explaining rate concepts using practical analogies |
Chalk and blackboard, rate calculation examples, exercise books
Chalk and blackboard, graph paper, rate examples, exercise books |
KLB Mathematics Book Three Pg 304-306
|
|
8 | 4 |
Graphical Methods
|
Advanced average rates
|
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Handle complex rate scenarios Apply rates to business and scientific problems Integrate rate concepts with other topics |
Q/A on complex rate applications using advanced scenarios
Discussions on business and scientific rate applications Solving challenging rate problems using integrated methods Demonstrations using comprehensive rate examples Explaining advanced applications using detailed analysis |
Chalk and blackboard, advanced rate scenarios, exercise books
|
KLB Mathematics Book Three Pg 304-310
|
|
8 | 5 |
Graphical Methods
|
Introduction to instantaneous rates
Rate of change at an instant |
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Understand instantaneous rate concepts Distinguish between average and instantaneous rates Apply instant rate methods |
Q/A on instantaneous rate concepts using limiting methods
Discussions on instant vs average rate differences Solving basic instantaneous rate problems Demonstrations using tangent line concepts Explaining instantaneous rate using practical examples |
Chalk and blackboard, tangent line examples, exercise books
Chalk and blackboard, detailed graph examples, exercise books |
KLB Mathematics Book Three Pg 310-311
|
|
8 | 6 |
Graphical Methods
|
Advanced instantaneous rates
Empirical graphs |
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Handle complex instantaneous rate scenarios Apply instant rates to advanced problems Integrate instantaneous concepts with applications |
Q/A on advanced instantaneous applications using complex examples
Discussions on sophisticated rate problems using detailed analysis Solving challenging instantaneous problems using systematic methods Demonstrations using comprehensive rate constructions Explaining advanced applications using detailed reasoning |
Chalk and blackboard, advanced rate examples, exercise books
Chalk and blackboard, experimental data examples, exercise books |
KLB Mathematics Book Three Pg 310-315
|
|
8 | 7 |
Graphical Methods
|
Advanced empirical methods
|
By the end of the
lesson, the learner
should be able to:
Draw the empirical graphs Apply empirical methods to complex data Handle large datasets and trends Interpret empirical results meaningfully |
Q/A on advanced empirical techniques using complex datasets
Discussions on trend analysis using systematic methods Solving challenging empirical problems using organized approaches Demonstrations using comprehensive data analysis Explaining advanced interpretations using detailed reasoning |
Chalk and blackboard, complex data examples, exercise books
|
KLB Mathematics Book Three Pg 315-321
|
|
9 |
End term exams |
Your Name Comes Here