Home






SCHEME OF WORK
Mathematics
Form 3 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 1
Trigonometry III
Review of Basic Trigonometric Ratios
Deriving the Identity sin²θ + cos²θ = 1
By the end of the lesson, the learner should be able to:

-Recall sin, cos, tan from right-angled triangles
-Apply Pythagoras theorem with trigonometry
-Use basic trigonometric ratios to solve problems
-Establish relationship between trigonometric ratios

-Review right-angled triangle ratios from Form 2
-Practice calculating unknown sides and angles
-Work through examples using SOH-CAH-TOA
-Solve simple practical problems
Exercise books
-Manila paper
-Rulers
-Calculators (if available)
-Unit circle diagrams
-Calculators
KLB Secondary Mathematics Form 4, Pages 99-103
2 2
Trigonometry III
Applications of sin²θ + cos²θ = 1
By the end of the lesson, the learner should be able to:

-Solve problems using the fundamental identity
-Find missing trigonometric ratios given one ratio
-Apply identity to simplify trigonometric expressions
-Use identity in geometric problem solving

-Work through examples finding cos when sin is given
-Practice simplifying complex trigonometric expressions
-Solve problems involving unknown angles
-Apply to real-world navigation problems
Exercise books
-Manila paper
-Trigonometric tables
-Real-world examples
KLB Secondary Mathematics Form 4, Pages 99-103
2 3
Trigonometry III
Additional Trigonometric Identities
Introduction to Waves
By the end of the lesson, the learner should be able to:

-Derive and apply tan θ = sin θ/cos θ
-Use reciprocal ratios (sec, cosec, cot)
-Apply multiple identities in problem solving
-Verify trigonometric identities algebraically

-Demonstrate relationship between tan, sin, cos
-Introduce reciprocal ratios with examples
-Practice identity verification techniques
-Solve composite identity problems
Exercise books
-Manila paper
-Identity reference sheet
-Calculators
-String/rope
-Wave diagrams
KLB Secondary Mathematics Form 4, Pages 99-103
2 4
Trigonometry III
Sine and Cosine Waves
Transformations of Sine Waves
By the end of the lesson, the learner should be able to:

-Plot graphs of y = sin x and y = cos x
-Identify amplitude and period of basic functions
-Compare sine and cosine wave patterns
-Read values from trigonometric graphs

-Plot sin x and cos x on same axes using manila paper
-Mark key points (0°, 90°, 180°, 270°, 360°)
-Measure and compare wave characteristics
-Practice reading values from completed graphs
Exercise books
-Manila paper
-Rulers
-Graph paper (if available)
-Colored pencils
KLB Secondary Mathematics Form 4, Pages 103-109
2 5
Trigonometry III
Period Changes in Trigonometric Functions
By the end of the lesson, the learner should be able to:

-Understand effect of coefficient on period
-Plot graphs of y = sin(bx) for different values of b
-Calculate periods of transformed functions
-Apply period changes to cyclical phenomena

-Plot y = sin(2x), y = sin(x/2) on manila paper
-Compare periods with y = sin x
-Calculate period using formula 360°/b
-Apply to frequency and musical pitch examples
Exercise books
-Manila paper
-Rulers
-Period calculation charts
KLB Secondary Mathematics Form 4, Pages 103-109
2 6
Trigonometry III
Combined Amplitude and Period Transformations
Phase Angles and Wave Shifts
By the end of the lesson, the learner should be able to:

-Plot graphs of y = a sin(bx) functions
-Identify both amplitude and period changes
-Solve problems with multiple transformations
-Apply to complex wave phenomena

-Plot y = 2 sin(3x), y = 3 sin(x/2) on manila paper
-Calculate both amplitude and period for each function
-Compare multiple transformed waves
-Apply to radio waves or tidal patterns
Exercise books
-Manila paper
-Rulers
-Transformation examples
-Colored pencils
-Phase shift examples
KLB Secondary Mathematics Form 4, Pages 103-109
2 7
Trigonometry III
General Trigonometric Functions
By the end of the lesson, the learner should be able to:

-Work with y = a sin(bx + c) functions
-Identify amplitude, period, and phase angle
-Plot complex trigonometric functions
-Solve problems involving all transformations

-Plot y = 2 sin(3x + 60°) step by step
-Identify all transformation parameters
-Practice reading values from complex waves
-Apply to real-world periodic phenomena
Exercise books
-Manila paper
-Rulers
-Complex function examples
KLB Secondary Mathematics Form 4, Pages 103-109
3 1
Trigonometry III
Cosine Wave Transformations
Introduction to Trigonometric Equations
By the end of the lesson, the learner should be able to:

-Apply transformations to cosine functions
-Plot y = a cos(bx + c) functions
-Compare cosine and sine transformations
-Use cosine functions in modeling

-Plot various cosine transformations on manila paper
-Compare with equivalent sine transformations
-Practice identifying cosine wave parameters
-Model temperature variations using cosine
Exercise books
-Manila paper
-Rulers
-Temperature data
-Unit circle diagrams
-Trigonometric tables
KLB Secondary Mathematics Form 4, Pages 103-109
3 2
Trigonometry III
Solving Basic Trigonometric Equations
Quadratic Trigonometric Equations
By the end of the lesson, the learner should be able to:

-Solve equations of form sin x = k, cos x = k
-Find all solutions in specified ranges
-Use symmetry properties of trigonometric functions
-Apply inverse trigonometric functions

-Work through sin x = 0.6 step by step
-Find all solutions between 0° and 360°
-Use calculator to find inverse trigonometric values
-Practice with multiple basic equations
Exercise books
-Manila paper
-Calculators
-Solution worksheets
-Factoring techniques
-Substitution examples
KLB Secondary Mathematics Form 4, Pages 109-112
3 3
Trigonometry III
Equations Involving Multiple Angles
By the end of the lesson, the learner should be able to:

-Solve equations like sin(2x) = 0.5
-Handle double and triple angle cases
-Find solutions for compound angle equations
-Apply to periodic motion problems

-Work through sin(2x) = 0.5 systematically
-Show relationship between 2x solutions and x solutions
-Practice with cos(3x) and tan(x/2) equations
-Apply to pendulum and rotation problems
Exercise books
-Manila paper
-Multiple angle examples
-Real applications
KLB Secondary Mathematics Form 4, Pages 109-112
3 4
Trigonometry III
Using Graphs to Solve Trigonometric Equations
Trigonometric Equations with Identities
By the end of the lesson, the learner should be able to:

-Solve equations graphically using intersections
-Plot trigonometric functions on same axes
-Find intersection points as equation solutions
-Verify algebraic solutions graphically

-Plot y = sin x and y = 0.5 on same axes
-Identify intersection points as solutions
-Use graphical method for complex equations
-Compare graphical and algebraic solutions
Exercise books
-Manila paper
-Rulers
-Graphing examples
-Identity reference sheets
-Complex examples
KLB Secondary Mathematics Form 4, Pages 109-112
3 5
Trigonometry (II)
The unit circle
By the end of the lesson, the learner should be able to:
Draw the unit circle
Identify coordinates on the unit circle
Understand the unit circle concept
Q/A on basic circle properties
Discussions on unit circle construction
Solving problems using unit circle
Demonstrations of circle drawing
Explaining unit circle applications
Calculators, protractors, rulers, pair of compasses
KLB Mathematics Book Three Pg 41-42
3 6
Trigonometry (II)
The unit circle
Trigonometric ratios of angles greater than 90°
By the end of the lesson, the learner should be able to:
Solve problems using the unit circle
Apply unit circle to find trigonometric values
Use unit circle for angle measurement
Q/A on unit circle mastery
Discussions on practical applications
Solving trigonometric problems
Demonstrations of value finding
Explaining angle relationships
Calculators, protractors, rulers, pair of compasses
KLB Mathematics Book Three Pg 43-44
3 7
Trigonometry (II)
Trigonometric ratios of angles greater than 90°
Trigonometric ratios of negative angles
By the end of the lesson, the learner should be able to:
Find the trigonometric values of angles
Solve problems with angles in different quadrants
Apply ASTC rule for sign determination
Q/A on quadrant properties
Discussions on sign conventions
Solving multi-quadrant problems
Demonstrations of ASTC rule
Explaining trigonometric signs
Calculators, quadrant charts
Geoboards, graph books, calculators
KLB Mathematics Book Three Pg 46-47
4 1
Trigonometry (II)
Trigonometric ratios of angles greater than 360°
By the end of the lesson, the learner should be able to:
Find the trigonometric values of angles greater than 360°
Apply coterminal angle concepts
Reduce angles to standard position
Q/A on angle reduction concepts
Discussions on coterminal angles
Solving extended angle problems
Demonstrations of angle reduction
Explaining periodic properties
Geoboards, graph books, calculators
KLB Mathematics Book Three Pg 49-51
4 2
Trigonometry (II)
Use of mathematical tables
By the end of the lesson, the learner should be able to:
Use mathematical tables to find sine and cosine
Read trigonometric tables accurately
Apply table interpolation methods
Q/A on table reading skills
Discussions on table structure
Solving problems using tables
Demonstrations of interpolation
Explaining table accuracy
Mathematical tables, calculators
KLB Mathematics Book Three Pg 51-55
4 3
Trigonometry (II)
Use of calculators
By the end of the lesson, the learner should be able to:
Use calculators to find sine, cosine and tan
Apply calculator functions for trigonometry
Verify calculator accuracy
Q/A on calculator trigonometric functions
Discussions on calculator modes
Solving problems using calculators
Demonstrations of function keys
Explaining degree vs radian modes
Calculators, function guides
KLB Mathematics Book Three Pg 56-58
4 4
Trigonometry (II)
Radian measure
Simple trigonometric graphs
By the end of the lesson, the learner should be able to:
Convert degrees to radians and vice versa
Apply radian measure in calculations
Understand radian-degree relationships
Q/A on angle measurement systems
Discussions on radian concepts
Solving conversion problems
Demonstrations of conversion methods
Explaining radian applications
Calculators, conversion charts
Calculators, graph papers, plotting guides
KLB Mathematics Book Three Pg 58-61
4 5
Trigonometry (II)
Graphs of cosines
Graphs of tan
By the end of the lesson, the learner should be able to:
Draw tables for cosine of values
Plot graphs of cosine functions
Compare sine and cosine graphs
Q/A on cosine properties
Discussions on graph relationships
Solving cosine graphing problems
Demonstrations of cosine plotting
Explaining phase relationships
Calculators, graph papers, plotting guides
KLB Mathematics Book Three Pg 63-64
4 6
Trigonometry (II)
The sine rule
By the end of the lesson, the learner should be able to:
State the sine rule
Apply sine rule to find solution of triangles
Solve triangles using sine rule
Q/A on triangle properties
Discussions on sine rule applications
Solving triangle problems
Demonstrations of rule application
Explaining ambiguous case
Calculators, triangle worksheets
KLB Mathematics Book Three Pg 65-70
4 7
Trigonometry (II)
Cosine rule
Problem solving
By the end of the lesson, the learner should be able to:
State the cosine rule
Apply cosine rule to find solution of triangles
Choose appropriate rule for triangle solving
Q/A on cosine rule concepts
Discussions on rule selection
Solving complex triangle problems
Demonstrations of cosine rule
Explaining when to use each rule
Calculators, triangle worksheets
Calculators, comprehensive problem sets, real-world examples
KLB Mathematics Book Three Pg 71-75
5 1
Circles: Chords and Tangents
Length of an arc
By the end of the lesson, the learner should be able to:
Calculate the length of an arc
Apply arc length formula
Understand arc-radius relationships
Q/A on circle properties and terminology
Discussions on arc measurement concepts
Solving basic arc length problems
Demonstrations of formula application
Explaining arc-angle relationships
Geometrical set, calculators
KLB Mathematics Book Three Pg 124-125
5 2
Circles: Chords and Tangents
Length of an arc
Chords
By the end of the lesson, the learner should be able to:
Calculate the length of an arc
Solve complex arc length problems
Apply arc concepts to real situations
Q/A on advanced arc applications
Discussions on practical arc measurements
Solving complex arc problems
Demonstrations of real-world applications
Explaining engineering and design uses
Geometrical set, calculators
KLB Mathematics Book Three Pg 124-125
5 3
Circles: Chords and Tangents
Parallel chords
By the end of the lesson, the learner should be able to:
Calculate the perpendicular bisector
Find the value of parallel chords
Apply parallel chord properties
Q/A on parallel chord concepts
Discussions on perpendicular bisector properties
Solving parallel chord problems
Demonstrations of construction techniques
Explaining geometric relationships
Geometrical set, calculators
KLB Mathematics Book Three Pg 129-131
5 4
Circles: Chords and Tangents
Equal chords
Intersecting chords
By the end of the lesson, the learner should be able to:
Find the length of equal chords
Apply equal chord theorems
Solve equal chord problems
Q/A on equal chord properties
Discussions on chord equality conditions
Solving equal chord problems
Demonstrations of proof techniques
Explaining theoretical foundations
Geometrical set, calculators
KLB Mathematics Book Three Pg 131-132
5 5
Circles: Chords and Tangents
Intersecting chords
Chord properties
By the end of the lesson, the learner should be able to:
Calculate the length of intersecting chords
Solve complex intersection problems
Apply advanced chord theorems
Q/A on advanced intersection scenarios
Discussions on complex chord relationships
Solving challenging intersection problems
Demonstrations of advanced techniques
Explaining sophisticated applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 135-139
5 6
Circles: Chords and Tangents
Tangent to a circle
By the end of the lesson, the learner should be able to:
Construct a tangent to a circle
Understand tangent properties
Apply tangent construction methods
Q/A on tangent definition and properties
Discussions on tangent construction
Solving basic tangent problems
Demonstrations of construction techniques
Explaining tangent characteristics
Geometrical set, calculators
KLB Mathematics Book Three Pg 139-140
5 7
Circles: Chords and Tangents
Tangent to a circle
Properties of tangents to a circle from an external point
By the end of the lesson, the learner should be able to:
Calculate the length of tangent
Calculate the angle between tangents
Apply tangent measurement techniques
Q/A on tangent calculations
Discussions on tangent measurement
Solving tangent calculation problems
Demonstrations of measurement methods
Explaining tangent applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 141-142
6 1
Circles: Chords and Tangents
Tangent properties
By the end of the lesson, the learner should be able to:
Solve comprehensive tangent problems
Apply all tangent concepts
Integrate tangent knowledge systematically
Q/A on comprehensive tangent mastery
Discussions on integrated applications
Solving mixed tangent problems
Demonstrations of complete understanding
Explaining systematic problem-solving
Geometrical set, calculators
KLB Mathematics Book Three Pg 139-147
6 2
Circles: Chords and Tangents
Tangents to two circles
By the end of the lesson, the learner should be able to:
Calculate the tangents of direct common tangents
Find direct common tangent properties
Apply two-circle tangent concepts
Q/A on two-circle tangent concepts
Discussions on direct tangent properties
Solving direct tangent problems
Demonstrations of construction methods
Explaining geometric relationships
Geometrical set, calculators
KLB Mathematics Book Three Pg 148-149
6 3
Circles: Chords and Tangents
Contact of circles
By the end of the lesson, the learner should be able to:
Calculate the radii of contact circles
Understand internal contact properties
Apply contact circle concepts
Q/A on circle contact concepts
Discussions on internal contact properties
Solving internal contact problems
Demonstrations of contact relationships
Explaining geometric principles
Geometrical set, calculators
KLB Mathematics Book Three Pg 151-153
6 4
Circles: Chords and Tangents
Circle contact
By the end of the lesson, the learner should be able to:
Solve problems involving chords, tangents and contact circles
Integrate all contact concepts
Apply comprehensive contact knowledge
Q/A on comprehensive contact understanding
Discussions on integrated problem-solving
Solving complex contact problems
Demonstrations of systematic approaches
Explaining complete contact mastery
Geometrical set, calculators
KLB Mathematics Book Three Pg 154-157
6 5
Circles: Chords and Tangents
Angle in alternate segment
By the end of the lesson, the learner should be able to:
Calculate the angles in alternate segments
Apply alternate segment theorem
Understand segment angle properties
Q/A on alternate segment concepts
Discussions on segment angle relationships
Solving basic segment problems
Demonstrations of theorem application
Explaining geometric proofs
Geometrical set, calculators
KLB Mathematics Book Three Pg 157-160
6 6
Circles: Chords and Tangents
Circumscribed circle
By the end of the lesson, the learner should be able to:
Construct circumscribed circles
Find circumscribed circle properties
Apply circumscription concepts
Q/A on circumscription concepts
Discussions on circumscribed circle construction
Solving circumscription problems
Demonstrations of construction techniques
Explaining circumscription applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 165
6 7
Circles: Chords and Tangents
Escribed circles
Centroid
By the end of the lesson, the learner should be able to:
Construct escribed circles
Find escribed circle properties
Apply escription concepts
Q/A on escription concepts
Discussions on escribed circle construction
Solving escription problems
Demonstrations of construction methods
Explaining escription applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 165-166
7 1
Circles: Chords and Tangents
Orthocenter
Circle and triangle relationships
By the end of the lesson, the learner should be able to:
Construct orthocenter
Find orthocenter properties
Apply orthocenter concepts
Q/A on orthocenter concepts
Discussions on orthocenter construction
Solving orthocenter problems
Demonstrations of construction methods
Explaining orthocenter applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 167
7 2
Compound Proportion and Rates of Work
Compound Proportions
By the end of the lesson, the learner should be able to:
Find the compound proportions
Understand compound proportion relationships
Apply compound proportion methods systematically
Solve problems involving multiple variables
Q/A on compound relationships using practical examples
Discussions on multiple variable situations using local scenarios
Solving compound proportion problems using systematic methods
Demonstrations using business and trade examples
Explaining compound proportion logic using step-by-step reasoning
Chalk and blackboard, local business examples, calculators if available, exercise books
KLB Mathematics Book Three Pg 288-290
7 3
Compound Proportion and Rates of Work
Compound Proportions applications
Proportional Parts
By the end of the lesson, the learner should be able to:
Find the compound proportions
Apply compound proportions to complex problems
Handle multi-step compound proportion scenarios
Solve real-world compound proportion problems
Q/A on advanced compound proportion using complex scenarios
Discussions on multi-variable relationships using practical contexts
Solving challenging compound problems using systematic approaches
Demonstrations using construction and farming examples
Explaining practical applications using community-based scenarios
Chalk and blackboard, construction/farming examples, exercise books
Chalk and blackboard, sharing demonstration materials, exercise books
KLB Mathematics Book Three Pg 290-291
7 4
Compound Proportion and Rates of Work
Proportional Parts applications
By the end of the lesson, the learner should be able to:
Calculate the proportional parts
Apply proportional parts to complex sharing scenarios
Handle business partnership profit sharing
Solve advanced proportional distribution problems
Q/A on complex proportional sharing using business examples
Discussions on partnership profit distribution using practical scenarios
Solving advanced proportional problems using systematic methods
Demonstrations using business partnership and investment examples
Explaining practical applications using meaningful contexts
Chalk and blackboard, business partnership examples, exercise books
KLB Mathematics Book Three Pg 291-293
7 5
Compound Proportion and Rates of Work
Rates of Work
Rates of Work and Mixtures
By the end of the lesson, the learner should be able to:
Calculate the rate of work
Understand work rate relationships
Apply time-work-efficiency concepts
Solve basic rate of work problems
Q/A on work rate calculation using practical examples
Discussions on efficiency and time relationships using work scenarios
Solving basic rate of work problems using systematic methods
Demonstrations using construction and labor examples
Explaining work rate concepts using practical work situations
Chalk and blackboard, work scenario examples, exercise books
Chalk and blackboard, mixture demonstration materials, exercise books
KLB Mathematics Book Three Pg 294-295
7 6
Graphical Methods
Tables of given relations
Graphs of given relations
By the end of the lesson, the learner should be able to:
Draw tables of given relations
Construct organized data tables systematically
Prepare data for graphical representation
Understand relationship between variables
Q/A on table construction using systematic data organization
Discussions on variable relationships using practical examples
Solving table preparation problems using organized methods
Demonstrations using data collection and tabulation
Explaining systematic data arrangement using logical procedures
Chalk and blackboard, ruled paper for tables, exercise books
Chalk and blackboard, graph paper or grids, rulers, exercise books
KLB Mathematics Book Three Pg 299
7 7
Graphical Methods
Tables and graphs integration
By the end of the lesson, the learner should be able to:
Draw tables and graphs of given relations
Integrate table construction with graph plotting
Analyze relationships using both methods
Compare tabular and graphical representations
Q/A on integrated table-graph construction using comprehensive methods
Discussions on data flow from tables to graphs
Solving integrated problems using systematic approaches
Demonstrations using complete data analysis procedures
Explaining relationship analysis using combined methods
Chalk and blackboard, graph paper, data examples, exercise books
KLB Mathematics Book Three Pg 299-300
8 1
Graphical Methods
Introduction to cubic equations
Graphical solution of cubic equations
By the end of the lesson, the learner should be able to:
Draw tables of cubic functions
Understand cubic equation characteristics
Prepare cubic function data systematically
Recognize cubic curve patterns
Q/A on cubic function evaluation using systematic calculation
Discussions on cubic equation properties using mathematical analysis
Solving cubic table preparation using organized methods
Demonstrations using cubic function examples
Explaining cubic characteristics using pattern recognition
Chalk and blackboard, cubic function examples, exercise books
Chalk and blackboard, graph paper, cubic equation examples, exercise books
KLB Mathematics Book Three Pg 301
8 2
Graphical Methods
Advanced cubic solutions
By the end of the lesson, the learner should be able to:
Draw graphs of cubic equations
Apply graphical methods to complex cubic problems
Handle multiple root scenarios
Verify solutions using graphical analysis
Q/A on advanced cubic graphing using complex examples
Discussions on multiple root identification using graph analysis
Solving challenging cubic problems using systematic methods
Demonstrations using detailed cubic constructions
Explaining verification methods using graphical checking
Chalk and blackboard, advanced graph examples, exercise books
KLB Mathematics Book Three Pg 302-304
8 3
Graphical Methods
Introduction to rates of change
Average rates of change
By the end of the lesson, the learner should be able to:
Calculate the average rates of change
Understand rate of change concepts
Apply rate calculations to practical problems
Interpret rate meanings in context
Q/A on rate calculation using slope methods
Discussions on rate interpretation using practical examples
Solving basic rate problems using systematic calculation
Demonstrations using speed-time and distance examples
Explaining rate concepts using practical analogies
Chalk and blackboard, rate calculation examples, exercise books
Chalk and blackboard, graph paper, rate examples, exercise books
KLB Mathematics Book Three Pg 304-306
8 4
Graphical Methods
Advanced average rates
Introduction to instantaneous rates
By the end of the lesson, the learner should be able to:
Calculate the average rates of change
Handle complex rate scenarios
Apply rates to business and scientific problems
Integrate rate concepts with other topics
Q/A on complex rate applications using advanced scenarios
Discussions on business and scientific rate applications
Solving challenging rate problems using integrated methods
Demonstrations using comprehensive rate examples
Explaining advanced applications using detailed analysis
Chalk and blackboard, advanced rate scenarios, exercise books
Chalk and blackboard, tangent line examples, exercise books
KLB Mathematics Book Three Pg 304-310
8 5
Graphical Methods
Rate of change at an instant
By the end of the lesson, the learner should be able to:
Calculate the rate of change at an instant
Apply instantaneous rate methods systematically
Use graphical techniques for instant rates
Solve practical instantaneous rate problems
Q/A on instantaneous rate calculation using graphical methods
Discussions on tangent line slope interpretation
Solving instantaneous rate problems using systematic approaches
Demonstrations using detailed tangent constructions
Explaining practical applications using real scenarios
Chalk and blackboard, detailed graph examples, exercise books
KLB Mathematics Book Three Pg 310-311
8 6
Graphical Methods
Advanced instantaneous rates
Empirical graphs
By the end of the lesson, the learner should be able to:
Calculate the rate of change at an instant
Handle complex instantaneous rate scenarios
Apply instant rates to advanced problems
Integrate instantaneous concepts with applications
Q/A on advanced instantaneous applications using complex examples
Discussions on sophisticated rate problems using detailed analysis
Solving challenging instantaneous problems using systematic methods
Demonstrations using comprehensive rate constructions
Explaining advanced applications using detailed reasoning
Chalk and blackboard, advanced rate examples, exercise books
Chalk and blackboard, experimental data examples, exercise books
KLB Mathematics Book Three Pg 310-315
8 7
Graphical Methods
Advanced empirical methods
By the end of the lesson, the learner should be able to:
Draw the empirical graphs
Apply empirical methods to complex data
Handle large datasets and trends
Interpret empirical results meaningfully
Q/A on advanced empirical techniques using complex datasets
Discussions on trend analysis using systematic methods
Solving challenging empirical problems using organized approaches
Demonstrations using comprehensive data analysis
Explaining advanced interpretations using detailed reasoning
Chalk and blackboard, complex data examples, exercise books
KLB Mathematics Book Three Pg 315-321

Your Name Comes Here


Download

Feedback