If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1 |
Trigonometry III
|
Review of Basic Trigonometric Ratios
Deriving the Identity sin²θ + cos²θ = 1 |
By the end of the
lesson, the learner
should be able to:
-Recall sin, cos, tan from right-angled triangles -Apply Pythagoras theorem with trigonometry -Use basic trigonometric ratios to solve problems -Establish relationship between trigonometric ratios |
-Review right-angled triangle ratios from Form 2 -Practice calculating unknown sides and angles -Work through examples using SOH-CAH-TOA -Solve simple practical problems |
Exercise books
-Manila paper -Rulers -Calculators (if available) -Unit circle diagrams -Calculators |
KLB Secondary Mathematics Form 4, Pages 99-103
|
|
2 | 2 |
Trigonometry III
|
Applications of sin²θ + cos²θ = 1
|
By the end of the
lesson, the learner
should be able to:
-Solve problems using the fundamental identity -Find missing trigonometric ratios given one ratio -Apply identity to simplify trigonometric expressions -Use identity in geometric problem solving |
-Work through examples finding cos when sin is given -Practice simplifying complex trigonometric expressions -Solve problems involving unknown angles -Apply to real-world navigation problems |
Exercise books
-Manila paper -Trigonometric tables -Real-world examples |
KLB Secondary Mathematics Form 4, Pages 99-103
|
|
2 | 3 |
Trigonometry III
|
Additional Trigonometric Identities
Introduction to Waves |
By the end of the
lesson, the learner
should be able to:
-Derive and apply tan θ = sin θ/cos θ -Use reciprocal ratios (sec, cosec, cot) -Apply multiple identities in problem solving -Verify trigonometric identities algebraically |
-Demonstrate relationship between tan, sin, cos -Introduce reciprocal ratios with examples -Practice identity verification techniques -Solve composite identity problems |
Exercise books
-Manila paper -Identity reference sheet -Calculators -String/rope -Wave diagrams |
KLB Secondary Mathematics Form 4, Pages 99-103
|
|
2 | 4 |
Trigonometry III
|
Sine and Cosine Waves
Transformations of Sine Waves |
By the end of the
lesson, the learner
should be able to:
-Plot graphs of y = sin x and y = cos x -Identify amplitude and period of basic functions -Compare sine and cosine wave patterns -Read values from trigonometric graphs |
-Plot sin x and cos x on same axes using manila paper -Mark key points (0°, 90°, 180°, 270°, 360°) -Measure and compare wave characteristics -Practice reading values from completed graphs |
Exercise books
-Manila paper -Rulers -Graph paper (if available) -Colored pencils |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
2 | 5 |
Trigonometry III
|
Period Changes in Trigonometric Functions
|
By the end of the
lesson, the learner
should be able to:
-Understand effect of coefficient on period -Plot graphs of y = sin(bx) for different values of b -Calculate periods of transformed functions -Apply period changes to cyclical phenomena |
-Plot y = sin(2x), y = sin(x/2) on manila paper -Compare periods with y = sin x -Calculate period using formula 360°/b -Apply to frequency and musical pitch examples |
Exercise books
-Manila paper -Rulers -Period calculation charts |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
2 | 6 |
Trigonometry III
|
Combined Amplitude and Period Transformations
Phase Angles and Wave Shifts |
By the end of the
lesson, the learner
should be able to:
-Plot graphs of y = a sin(bx) functions -Identify both amplitude and period changes -Solve problems with multiple transformations -Apply to complex wave phenomena |
-Plot y = 2 sin(3x), y = 3 sin(x/2) on manila paper -Calculate both amplitude and period for each function -Compare multiple transformed waves -Apply to radio waves or tidal patterns |
Exercise books
-Manila paper -Rulers -Transformation examples -Colored pencils -Phase shift examples |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
2 | 7 |
Trigonometry III
|
General Trigonometric Functions
|
By the end of the
lesson, the learner
should be able to:
-Work with y = a sin(bx + c) functions -Identify amplitude, period, and phase angle -Plot complex trigonometric functions -Solve problems involving all transformations |
-Plot y = 2 sin(3x + 60°) step by step -Identify all transformation parameters -Practice reading values from complex waves -Apply to real-world periodic phenomena |
Exercise books
-Manila paper -Rulers -Complex function examples |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
3 | 1 |
Trigonometry III
|
Cosine Wave Transformations
Introduction to Trigonometric Equations |
By the end of the
lesson, the learner
should be able to:
-Apply transformations to cosine functions -Plot y = a cos(bx + c) functions -Compare cosine and sine transformations -Use cosine functions in modeling |
-Plot various cosine transformations on manila paper -Compare with equivalent sine transformations -Practice identifying cosine wave parameters -Model temperature variations using cosine |
Exercise books
-Manila paper -Rulers -Temperature data -Unit circle diagrams -Trigonometric tables |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
3 | 2 |
Trigonometry III
|
Solving Basic Trigonometric Equations
Quadratic Trigonometric Equations |
By the end of the
lesson, the learner
should be able to:
-Solve equations of form sin x = k, cos x = k -Find all solutions in specified ranges -Use symmetry properties of trigonometric functions -Apply inverse trigonometric functions |
-Work through sin x = 0.6 step by step -Find all solutions between 0° and 360° -Use calculator to find inverse trigonometric values -Practice with multiple basic equations |
Exercise books
-Manila paper -Calculators -Solution worksheets -Factoring techniques -Substitution examples |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
3 | 3 |
Trigonometry III
|
Equations Involving Multiple Angles
|
By the end of the
lesson, the learner
should be able to:
-Solve equations like sin(2x) = 0.5 -Handle double and triple angle cases -Find solutions for compound angle equations -Apply to periodic motion problems |
-Work through sin(2x) = 0.5 systematically -Show relationship between 2x solutions and x solutions -Practice with cos(3x) and tan(x/2) equations -Apply to pendulum and rotation problems |
Exercise books
-Manila paper -Multiple angle examples -Real applications |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
3 | 4 |
Trigonometry III
|
Using Graphs to Solve Trigonometric Equations
Trigonometric Equations with Identities |
By the end of the
lesson, the learner
should be able to:
-Solve equations graphically using intersections -Plot trigonometric functions on same axes -Find intersection points as equation solutions -Verify algebraic solutions graphically |
-Plot y = sin x and y = 0.5 on same axes -Identify intersection points as solutions -Use graphical method for complex equations -Compare graphical and algebraic solutions |
Exercise books
-Manila paper -Rulers -Graphing examples -Identity reference sheets -Complex examples |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
3 | 5 |
Trigonometry (II)
|
The unit circle
|
By the end of the
lesson, the learner
should be able to:
Draw the unit circle Identify coordinates on the unit circle Understand the unit circle concept |
Q/A on basic circle properties
Discussions on unit circle construction Solving problems using unit circle Demonstrations of circle drawing Explaining unit circle applications |
Calculators, protractors, rulers, pair of compasses
|
KLB Mathematics Book Three Pg 41-42
|
|
3 | 6 |
Trigonometry (II)
|
The unit circle
Trigonometric ratios of angles greater than 90° |
By the end of the
lesson, the learner
should be able to:
Solve problems using the unit circle Apply unit circle to find trigonometric values Use unit circle for angle measurement |
Q/A on unit circle mastery
Discussions on practical applications Solving trigonometric problems Demonstrations of value finding Explaining angle relationships |
Calculators, protractors, rulers, pair of compasses
|
KLB Mathematics Book Three Pg 43-44
|
|
3 | 7 |
Trigonometry (II)
|
Trigonometric ratios of angles greater than 90°
Trigonometric ratios of negative angles |
By the end of the
lesson, the learner
should be able to:
Find the trigonometric values of angles Solve problems with angles in different quadrants Apply ASTC rule for sign determination |
Q/A on quadrant properties
Discussions on sign conventions Solving multi-quadrant problems Demonstrations of ASTC rule Explaining trigonometric signs |
Calculators, quadrant charts
Geoboards, graph books, calculators |
KLB Mathematics Book Three Pg 46-47
|
|
4 | 1 |
Trigonometry (II)
|
Trigonometric ratios of angles greater than 360°
|
By the end of the
lesson, the learner
should be able to:
Find the trigonometric values of angles greater than 360° Apply coterminal angle concepts Reduce angles to standard position |
Q/A on angle reduction concepts
Discussions on coterminal angles Solving extended angle problems Demonstrations of angle reduction Explaining periodic properties |
Geoboards, graph books, calculators
|
KLB Mathematics Book Three Pg 49-51
|
|
4 | 2 |
Trigonometry (II)
|
Use of mathematical tables
|
By the end of the
lesson, the learner
should be able to:
Use mathematical tables to find sine and cosine Read trigonometric tables accurately Apply table interpolation methods |
Q/A on table reading skills
Discussions on table structure Solving problems using tables Demonstrations of interpolation Explaining table accuracy |
Mathematical tables, calculators
|
KLB Mathematics Book Three Pg 51-55
|
|
4 | 3 |
Trigonometry (II)
|
Use of calculators
|
By the end of the
lesson, the learner
should be able to:
Use calculators to find sine, cosine and tan Apply calculator functions for trigonometry Verify calculator accuracy |
Q/A on calculator trigonometric functions
Discussions on calculator modes Solving problems using calculators Demonstrations of function keys Explaining degree vs radian modes |
Calculators, function guides
|
KLB Mathematics Book Three Pg 56-58
|
|
4 | 4 |
Trigonometry (II)
|
Radian measure
Simple trigonometric graphs |
By the end of the
lesson, the learner
should be able to:
Convert degrees to radians and vice versa Apply radian measure in calculations Understand radian-degree relationships |
Q/A on angle measurement systems
Discussions on radian concepts Solving conversion problems Demonstrations of conversion methods Explaining radian applications |
Calculators, conversion charts
Calculators, graph papers, plotting guides |
KLB Mathematics Book Three Pg 58-61
|
|
4 | 5 |
Trigonometry (II)
|
Graphs of cosines
Graphs of tan |
By the end of the
lesson, the learner
should be able to:
Draw tables for cosine of values Plot graphs of cosine functions Compare sine and cosine graphs |
Q/A on cosine properties
Discussions on graph relationships Solving cosine graphing problems Demonstrations of cosine plotting Explaining phase relationships |
Calculators, graph papers, plotting guides
|
KLB Mathematics Book Three Pg 63-64
|
|
4 | 6 |
Trigonometry (II)
|
The sine rule
|
By the end of the
lesson, the learner
should be able to:
State the sine rule Apply sine rule to find solution of triangles Solve triangles using sine rule |
Q/A on triangle properties
Discussions on sine rule applications Solving triangle problems Demonstrations of rule application Explaining ambiguous case |
Calculators, triangle worksheets
|
KLB Mathematics Book Three Pg 65-70
|
|
4 | 7 |
Trigonometry (II)
|
Cosine rule
Problem solving |
By the end of the
lesson, the learner
should be able to:
State the cosine rule Apply cosine rule to find solution of triangles Choose appropriate rule for triangle solving |
Q/A on cosine rule concepts
Discussions on rule selection Solving complex triangle problems Demonstrations of cosine rule Explaining when to use each rule |
Calculators, triangle worksheets
Calculators, comprehensive problem sets, real-world examples |
KLB Mathematics Book Three Pg 71-75
|
|
5 | 1 |
Circles: Chords and Tangents
|
Length of an arc
|
By the end of the
lesson, the learner
should be able to:
Calculate the length of an arc Apply arc length formula Understand arc-radius relationships |
Q/A on circle properties and terminology
Discussions on arc measurement concepts Solving basic arc length problems Demonstrations of formula application Explaining arc-angle relationships |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 124-125
|
|
5 | 2 |
Circles: Chords and Tangents
|
Length of an arc
Chords |
By the end of the
lesson, the learner
should be able to:
Calculate the length of an arc Solve complex arc length problems Apply arc concepts to real situations |
Q/A on advanced arc applications
Discussions on practical arc measurements Solving complex arc problems Demonstrations of real-world applications Explaining engineering and design uses |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 124-125
|
|
5 | 3 |
Circles: Chords and Tangents
|
Parallel chords
|
By the end of the
lesson, the learner
should be able to:
Calculate the perpendicular bisector Find the value of parallel chords Apply parallel chord properties |
Q/A on parallel chord concepts
Discussions on perpendicular bisector properties Solving parallel chord problems Demonstrations of construction techniques Explaining geometric relationships |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 129-131
|
|
5 | 4 |
Circles: Chords and Tangents
|
Equal chords
Intersecting chords |
By the end of the
lesson, the learner
should be able to:
Find the length of equal chords Apply equal chord theorems Solve equal chord problems |
Q/A on equal chord properties
Discussions on chord equality conditions Solving equal chord problems Demonstrations of proof techniques Explaining theoretical foundations |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 131-132
|
|
5 | 5 |
Circles: Chords and Tangents
|
Intersecting chords
Chord properties |
By the end of the
lesson, the learner
should be able to:
Calculate the length of intersecting chords Solve complex intersection problems Apply advanced chord theorems |
Q/A on advanced intersection scenarios
Discussions on complex chord relationships Solving challenging intersection problems Demonstrations of advanced techniques Explaining sophisticated applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 135-139
|
|
5 | 6 |
Circles: Chords and Tangents
|
Tangent to a circle
|
By the end of the
lesson, the learner
should be able to:
Construct a tangent to a circle Understand tangent properties Apply tangent construction methods |
Q/A on tangent definition and properties
Discussions on tangent construction Solving basic tangent problems Demonstrations of construction techniques Explaining tangent characteristics |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 139-140
|
|
5 | 7 |
Circles: Chords and Tangents
|
Tangent to a circle
Properties of tangents to a circle from an external point |
By the end of the
lesson, the learner
should be able to:
Calculate the length of tangent Calculate the angle between tangents Apply tangent measurement techniques |
Q/A on tangent calculations
Discussions on tangent measurement Solving tangent calculation problems Demonstrations of measurement methods Explaining tangent applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 141-142
|
|
6 | 1 |
Circles: Chords and Tangents
|
Tangent properties
|
By the end of the
lesson, the learner
should be able to:
Solve comprehensive tangent problems Apply all tangent concepts Integrate tangent knowledge systematically |
Q/A on comprehensive tangent mastery
Discussions on integrated applications Solving mixed tangent problems Demonstrations of complete understanding Explaining systematic problem-solving |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 139-147
|
|
6 | 2 |
Circles: Chords and Tangents
|
Tangents to two circles
|
By the end of the
lesson, the learner
should be able to:
Calculate the tangents of direct common tangents Find direct common tangent properties Apply two-circle tangent concepts |
Q/A on two-circle tangent concepts
Discussions on direct tangent properties Solving direct tangent problems Demonstrations of construction methods Explaining geometric relationships |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 148-149
|
|
6 | 3 |
Circles: Chords and Tangents
|
Contact of circles
|
By the end of the
lesson, the learner
should be able to:
Calculate the radii of contact circles Understand internal contact properties Apply contact circle concepts |
Q/A on circle contact concepts
Discussions on internal contact properties Solving internal contact problems Demonstrations of contact relationships Explaining geometric principles |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 151-153
|
|
6 | 4 |
Circles: Chords and Tangents
|
Circle contact
|
By the end of the
lesson, the learner
should be able to:
Solve problems involving chords, tangents and contact circles Integrate all contact concepts Apply comprehensive contact knowledge |
Q/A on comprehensive contact understanding
Discussions on integrated problem-solving Solving complex contact problems Demonstrations of systematic approaches Explaining complete contact mastery |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 154-157
|
|
6 | 5 |
Circles: Chords and Tangents
|
Angle in alternate segment
|
By the end of the
lesson, the learner
should be able to:
Calculate the angles in alternate segments Apply alternate segment theorem Understand segment angle properties |
Q/A on alternate segment concepts
Discussions on segment angle relationships Solving basic segment problems Demonstrations of theorem application Explaining geometric proofs |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 157-160
|
|
6 | 6 |
Circles: Chords and Tangents
|
Circumscribed circle
|
By the end of the
lesson, the learner
should be able to:
Construct circumscribed circles Find circumscribed circle properties Apply circumscription concepts |
Q/A on circumscription concepts
Discussions on circumscribed circle construction Solving circumscription problems Demonstrations of construction techniques Explaining circumscription applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 165
|
|
6 | 7 |
Circles: Chords and Tangents
|
Escribed circles
Centroid |
By the end of the
lesson, the learner
should be able to:
Construct escribed circles Find escribed circle properties Apply escription concepts |
Q/A on escription concepts
Discussions on escribed circle construction Solving escription problems Demonstrations of construction methods Explaining escription applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 165-166
|
|
7 | 1 |
Circles: Chords and Tangents
|
Orthocenter
Circle and triangle relationships |
By the end of the
lesson, the learner
should be able to:
Construct orthocenter Find orthocenter properties Apply orthocenter concepts |
Q/A on orthocenter concepts
Discussions on orthocenter construction Solving orthocenter problems Demonstrations of construction methods Explaining orthocenter applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 167
|
|
7 | 2 |
Compound Proportion and Rates of Work
|
Compound Proportions
|
By the end of the
lesson, the learner
should be able to:
Find the compound proportions Understand compound proportion relationships Apply compound proportion methods systematically Solve problems involving multiple variables |
Q/A on compound relationships using practical examples
Discussions on multiple variable situations using local scenarios Solving compound proportion problems using systematic methods Demonstrations using business and trade examples Explaining compound proportion logic using step-by-step reasoning |
Chalk and blackboard, local business examples, calculators if available, exercise books
|
KLB Mathematics Book Three Pg 288-290
|
|
7 | 3 |
Compound Proportion and Rates of Work
|
Compound Proportions applications
Proportional Parts |
By the end of the
lesson, the learner
should be able to:
Find the compound proportions Apply compound proportions to complex problems Handle multi-step compound proportion scenarios Solve real-world compound proportion problems |
Q/A on advanced compound proportion using complex scenarios
Discussions on multi-variable relationships using practical contexts Solving challenging compound problems using systematic approaches Demonstrations using construction and farming examples Explaining practical applications using community-based scenarios |
Chalk and blackboard, construction/farming examples, exercise books
Chalk and blackboard, sharing demonstration materials, exercise books |
KLB Mathematics Book Three Pg 290-291
|
|
7 | 4 |
Compound Proportion and Rates of Work
|
Proportional Parts applications
|
By the end of the
lesson, the learner
should be able to:
Calculate the proportional parts Apply proportional parts to complex sharing scenarios Handle business partnership profit sharing Solve advanced proportional distribution problems |
Q/A on complex proportional sharing using business examples
Discussions on partnership profit distribution using practical scenarios Solving advanced proportional problems using systematic methods Demonstrations using business partnership and investment examples Explaining practical applications using meaningful contexts |
Chalk and blackboard, business partnership examples, exercise books
|
KLB Mathematics Book Three Pg 291-293
|
|
7 | 5 |
Compound Proportion and Rates of Work
|
Rates of Work
Rates of Work and Mixtures |
By the end of the
lesson, the learner
should be able to:
Calculate the rate of work Understand work rate relationships Apply time-work-efficiency concepts Solve basic rate of work problems |
Q/A on work rate calculation using practical examples
Discussions on efficiency and time relationships using work scenarios Solving basic rate of work problems using systematic methods Demonstrations using construction and labor examples Explaining work rate concepts using practical work situations |
Chalk and blackboard, work scenario examples, exercise books
Chalk and blackboard, mixture demonstration materials, exercise books |
KLB Mathematics Book Three Pg 294-295
|
|
7 | 6 |
Graphical Methods
|
Tables of given relations
Graphs of given relations |
By the end of the
lesson, the learner
should be able to:
Draw tables of given relations Construct organized data tables systematically Prepare data for graphical representation Understand relationship between variables |
Q/A on table construction using systematic data organization
Discussions on variable relationships using practical examples Solving table preparation problems using organized methods Demonstrations using data collection and tabulation Explaining systematic data arrangement using logical procedures |
Chalk and blackboard, ruled paper for tables, exercise books
Chalk and blackboard, graph paper or grids, rulers, exercise books |
KLB Mathematics Book Three Pg 299
|
|
7 | 7 |
Graphical Methods
|
Tables and graphs integration
|
By the end of the
lesson, the learner
should be able to:
Draw tables and graphs of given relations Integrate table construction with graph plotting Analyze relationships using both methods Compare tabular and graphical representations |
Q/A on integrated table-graph construction using comprehensive methods
Discussions on data flow from tables to graphs Solving integrated problems using systematic approaches Demonstrations using complete data analysis procedures Explaining relationship analysis using combined methods |
Chalk and blackboard, graph paper, data examples, exercise books
|
KLB Mathematics Book Three Pg 299-300
|
|
8 | 1 |
Graphical Methods
|
Introduction to cubic equations
Graphical solution of cubic equations |
By the end of the
lesson, the learner
should be able to:
Draw tables of cubic functions Understand cubic equation characteristics Prepare cubic function data systematically Recognize cubic curve patterns |
Q/A on cubic function evaluation using systematic calculation
Discussions on cubic equation properties using mathematical analysis Solving cubic table preparation using organized methods Demonstrations using cubic function examples Explaining cubic characteristics using pattern recognition |
Chalk and blackboard, cubic function examples, exercise books
Chalk and blackboard, graph paper, cubic equation examples, exercise books |
KLB Mathematics Book Three Pg 301
|
|
8 | 2 |
Graphical Methods
|
Advanced cubic solutions
|
By the end of the
lesson, the learner
should be able to:
Draw graphs of cubic equations Apply graphical methods to complex cubic problems Handle multiple root scenarios Verify solutions using graphical analysis |
Q/A on advanced cubic graphing using complex examples
Discussions on multiple root identification using graph analysis Solving challenging cubic problems using systematic methods Demonstrations using detailed cubic constructions Explaining verification methods using graphical checking |
Chalk and blackboard, advanced graph examples, exercise books
|
KLB Mathematics Book Three Pg 302-304
|
|
8 | 3 |
Graphical Methods
|
Introduction to rates of change
Average rates of change |
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Understand rate of change concepts Apply rate calculations to practical problems Interpret rate meanings in context |
Q/A on rate calculation using slope methods
Discussions on rate interpretation using practical examples Solving basic rate problems using systematic calculation Demonstrations using speed-time and distance examples Explaining rate concepts using practical analogies |
Chalk and blackboard, rate calculation examples, exercise books
Chalk and blackboard, graph paper, rate examples, exercise books |
KLB Mathematics Book Three Pg 304-306
|
|
8 | 4 |
Graphical Methods
|
Advanced average rates
Introduction to instantaneous rates |
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Handle complex rate scenarios Apply rates to business and scientific problems Integrate rate concepts with other topics |
Q/A on complex rate applications using advanced scenarios
Discussions on business and scientific rate applications Solving challenging rate problems using integrated methods Demonstrations using comprehensive rate examples Explaining advanced applications using detailed analysis |
Chalk and blackboard, advanced rate scenarios, exercise books
Chalk and blackboard, tangent line examples, exercise books |
KLB Mathematics Book Three Pg 304-310
|
|
8 | 5 |
Graphical Methods
|
Rate of change at an instant
|
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Apply instantaneous rate methods systematically Use graphical techniques for instant rates Solve practical instantaneous rate problems |
Q/A on instantaneous rate calculation using graphical methods
Discussions on tangent line slope interpretation Solving instantaneous rate problems using systematic approaches Demonstrations using detailed tangent constructions Explaining practical applications using real scenarios |
Chalk and blackboard, detailed graph examples, exercise books
|
KLB Mathematics Book Three Pg 310-311
|
|
8 | 6 |
Graphical Methods
|
Advanced instantaneous rates
Empirical graphs |
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Handle complex instantaneous rate scenarios Apply instant rates to advanced problems Integrate instantaneous concepts with applications |
Q/A on advanced instantaneous applications using complex examples
Discussions on sophisticated rate problems using detailed analysis Solving challenging instantaneous problems using systematic methods Demonstrations using comprehensive rate constructions Explaining advanced applications using detailed reasoning |
Chalk and blackboard, advanced rate examples, exercise books
Chalk and blackboard, experimental data examples, exercise books |
KLB Mathematics Book Three Pg 310-315
|
|
8 | 7 |
Graphical Methods
|
Advanced empirical methods
|
By the end of the
lesson, the learner
should be able to:
Draw the empirical graphs Apply empirical methods to complex data Handle large datasets and trends Interpret empirical results meaningfully |
Q/A on advanced empirical techniques using complex datasets
Discussions on trend analysis using systematic methods Solving challenging empirical problems using organized approaches Demonstrations using comprehensive data analysis Explaining advanced interpretations using detailed reasoning |
Chalk and blackboard, complex data examples, exercise books
|
KLB Mathematics Book Three Pg 315-321
|
Your Name Comes Here