If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 | 1 |
Matrices
|
Introduction and real-life applications
Order of a matrix and elements |
By the end of the
lesson, the learner
should be able to:
Define matrices and identify matrix applications Recognize matrices in everyday contexts Understand tabular data representation Appreciate the importance of matrices |
Q/A on tabular data in daily life
Discussions on school exam results tables Analyzing bus timetables and price lists Demonstrations using newspaper sports tables Explaining matrix notation using grid patterns |
Old newspapers with league tables, chalk and blackboard, exercise books
Chalk and blackboard, ruled exercise books, class register |
KLB Mathematics Book Three Pg 168-169
|
|
1 | 2 |
Matrices
|
Square matrices, row and column matrices
Addition of matrices Subtraction of matrices Combined addition and subtraction |
By the end of the
lesson, the learner
should be able to:
Classify matrices by their dimensions Identify square, row, and column matrices Understand zero and null matrices Apply matrix equality conditions |
Q/A on matrix classification using drawn examples
Discussions on special matrix types using patterns Solving matrix identification using cutout papers Demonstrations using classroom objects arrangement Explaining matrix comparison using simple examples |
Paper cutouts, chalk and blackboard, counters or bottle tops
Counters or stones, chalk and blackboard, exercise books Chalk and blackboard, exercise books, number cards made from cardboard Chalk and blackboard, exercise books, locally made operation cards |
KLB Mathematics Book Three Pg 169-170
|
|
1 | 3 |
Matrices
|
Scalar multiplication
Introduction to matrix multiplication Matrix multiplication (2×2 matrices) |
By the end of the
lesson, the learner
should be able to:
Multiply matrices by scalar quantities Apply scalar multiplication rules Understand the effect of scalar multiplication Solve scalar multiplication problems |
Q/A on scalar multiplication using times tables
Discussions on scaling using multiplication concepts Solving scalar problems using repeated addition Demonstrations using groups of objects Explaining scalar effects using enlargement concepts |
Beans or stones for grouping, chalk and blackboard, exercise books
Chalk and blackboard, rulers for tracing, exercise books Chalk and blackboard, exercise books, homemade grid templates |
KLB Mathematics Book Three Pg 174-175
|
|
1 | 4 |
Matrices
|
Matrix multiplication (larger matrices)
Properties of matrix multiplication |
By the end of the
lesson, the learner
should be able to:
Multiply matrices of various orders Apply multiplication to 3×3 and larger matrices Determine when multiplication is possible Calculate products efficiently |
Q/A on larger matrix multiplication using patterns
Discussions on efficiency techniques using shortcuts Solving advanced problems using systematic methods Demonstrations using organized calculation procedures Explaining general principles using examples |
Chalk and blackboard, large sheets of paper for working, exercise books
Chalk and blackboard, exercise books, cardboard for property cards |
KLB Mathematics Book Three Pg 176-179
|
|
1 | 5 |
Matrices
|
Real-world matrix multiplication applications
Identity matrix |
By the end of the
lesson, the learner
should be able to:
Apply matrix multiplication to practical problems Solve business and economic applications Calculate costs, revenues, and quantities Interpret matrix multiplication results |
Q/A on practical applications using local business examples
Discussions on market problems using familiar contexts Solving real-world problems using matrix methods Demonstrations using shop keeper scenarios Explaining result interpretation using meaningful contexts |
Chalk and blackboard, local price lists, exercise books
Chalk and blackboard, exercise books, pattern cards made from paper |
KLB Mathematics Book Three Pg 176-179
|
|
1 | 6 |
Matrices
|
Determinant of 2×2 matrices
Inverse of 2×2 matrices - theory |
By the end of the
lesson, the learner
should be able to:
Calculate determinants of 2×2 matrices Apply the determinant formula correctly Understand geometric interpretation of determinants Use determinants to classify matrices |
Q/A on determinant calculation using cross multiplication
Discussions on formula application using memory aids Solving determinant problems using systematic approach Demonstrations using cross pattern method Explaining geometric meaning using area concepts |
Chalk and blackboard, exercise books, crossed sticks for demonstration
Chalk and blackboard, exercise books, fraction examples |
KLB Mathematics Book Three Pg 183
|
|
1 | 7 |
Matrices
|
Inverse of 2×2 matrices - practice
Introduction to solving simultaneous equations |
By the end of the
lesson, the learner
should be able to:
Calculate inverses of 2×2 matrices systematically Verify inverse calculations through multiplication Apply inverse properties correctly Solve complex inverse problems |
Q/A on inverse calculation verification methods
Discussions on accuracy checking using multiplication Solving advanced inverse problems using practice Demonstrations using verification procedures Explaining checking methods using examples |
Chalk and blackboard, exercise books, scrap paper for verification
Chalk and blackboard, exercise books, equation examples from previous topics |
KLB Mathematics Book Three Pg 185-187
|
|
2 | 1 |
Matrices
|
Solving 2×2 simultaneous equations using matrices
Advanced simultaneous equation problems Matrix applications in real-world problems |
By the end of the
lesson, the learner
should be able to:
Solve 2×2 simultaneous equations using matrix methods Apply inverse matrix techniques Verify solutions by substitution Compare matrix method with other techniques |
Q/A on matrix solution methods using step-by-step approach
Discussions on solution verification using substitution Solving 2×2 systems using complete method Demonstrations using organized solution process Explaining method advantages using comparisons |
Chalk and blackboard, exercise books, previous elimination method examples
Chalk and blackboard, exercise books, graph paper if available Chalk and blackboard, local business examples, exercise books |
KLB Mathematics Book Three Pg 188-190
|
|
2 | 2 |
Matrices
|
Transpose of matrices
Matrix equation solving |
By the end of the
lesson, the learner
should be able to:
Define and calculate matrix transpose Understand transpose properties Apply transpose operations correctly Solve problems involving transpose |
Q/A on transpose concepts using reflection ideas
Discussions on row-column interchange using visual methods Solving transpose problems using systematic approach Demonstrations using flip and rotate concepts Explaining properties using symmetry ideas |
Chalk and blackboard, exercise books, paper cutouts for demonstration
Chalk and blackboard, exercise books, algebra reference examples |
KLB Mathematics Book Three Pg 170-174
|
|
2 | 3 |
Formulae and Variations
|
Introduction to formulae
Subject of a formula - basic cases |
By the end of the
lesson, the learner
should be able to:
Define formulae and identify formula components Recognize formulae in everyday contexts Understand the relationship between variables Appreciate the importance of formulae in mathematics |
Q/A on familiar formulae from daily life
Discussions on cooking recipes as formulae Analyzing distance-time relationships using walking examples Demonstrations using perimeter and area calculations Explaining formula notation using simple examples |
Chalk and blackboard, measuring tape or string, exercise books
Chalk and blackboard, simple balance (stones and stick), exercise books |
KLB Mathematics Book Three Pg 191-193
|
|
2 | 4 |
Formulae and Variations
|
Subject of a formula - intermediate cases
Subject of a formula - advanced cases |
By the end of the
lesson, the learner
should be able to:
Make complex variables the subject of formulae Handle formulae with fractions and powers Apply multiple inverse operations systematically Solve intermediate difficulty problems |
Q/A on complex rearrangement using systematic approach
Discussions on fraction handling using common denominators Solving intermediate problems using organized methods Demonstrations using step-by-step blackboard work Explaining systematic approaches using flowcharts |
Chalk and blackboard, fraction strips made from paper, exercise books
Chalk and blackboard, squared paper patterns, exercise books |
KLB Mathematics Book Three Pg 191-193
|
|
2 | 5 |
Formulae and Variations
|
Applications of formula manipulation
Introduction to variation |
By the end of the
lesson, the learner
should be able to:
Apply formula rearrangement to practical problems Solve real-world problems using formula manipulation Calculate unknown quantities in various contexts Interpret results in meaningful situations |
Q/A on practical applications using local examples
Discussions on real-world formula use in farming/building Solving application problems using formula rearrangement Demonstrations using construction and farming scenarios Explaining practical interpretation using community examples |
Chalk and blackboard, local measurement tools, exercise books
Chalk and blackboard, local price lists from markets, exercise books |
KLB Mathematics Book Three Pg 191-193
|
|
2 | 6 |
Formulae and Variations
Sequences and Series |
Direct variation - introduction
Introduction to sequences and finding terms |
By the end of the
lesson, the learner
should be able to:
Understand direct proportionality concepts Recognize direct variation patterns Use direct variation notation correctly Calculate constants of proportionality |
Q/A on direct relationships using simple examples
Discussions on proportional changes using market scenarios Solving basic direct variation problems Demonstrations using doubling and tripling examples Explaining proportionality using ratio concepts |
Chalk and blackboard, beans or stones for counting, exercise books
Chalk and blackboard, stones or beans for patterns, exercise books |
KLB Mathematics Book Three Pg 194-196
|
|
2 | 7 |
Sequences and Series
|
General term of sequences and applications
Arithmetic sequences and nth term |
By the end of the
lesson, the learner
should be able to:
Develop general rules for sequences Express the nth term using algebraic notation Find specific terms using general formulas Apply sequence concepts to practical problems |
Q/A on rule formulation using systematic approach
Discussions on algebraic expression development Solving general term and application problems Demonstrations using position-value relationships Explaining practical relevance using community examples |
Chalk and blackboard, numbered cards made from paper, exercise books
Chalk and blackboard, measuring tape or string, exercise books |
KLB Mathematics Book Three Pg 207-208
|
|
3 | 1 |
Sequences and Series
|
Arithmetic sequence applications
Geometric sequences and nth term |
By the end of the
lesson, the learner
should be able to:
Solve complex arithmetic sequence problems Apply arithmetic sequences to real-world problems Handle word problems involving arithmetic sequences Model practical situations using arithmetic progressions |
Q/A on practical applications using local business examples
Discussions on salary progression and savings plans Solving real-world problems using sequence methods Demonstrations using employment and finance scenarios Explaining practical interpretation using meaningful contexts |
Chalk and blackboard, local employment/savings examples, exercise books
Chalk and blackboard, objects for doubling demonstrations, exercise books |
KLB Mathematics Book Three Pg 209-210
|
|
3 | 2 |
Sequences and Series
|
Geometric sequence applications
Arithmetic series and sum formula |
By the end of the
lesson, the learner
should be able to:
Solve complex geometric sequence problems Apply geometric sequences to real-world problems Handle population growth and depreciation problems Model exponential patterns using sequences |
Q/A on practical applications using population/growth examples
Discussions on exponential growth in nature and economics Solving real-world problems using geometric methods Demonstrations using population and business scenarios Explaining practical interpretation using meaningful contexts |
Chalk and blackboard, population/growth data examples, exercise books
Chalk and blackboard, counting materials for summation, exercise books |
KLB Mathematics Book Three Pg 211-213
|
|
3 | 3 |
Sequences and Series
|
Geometric series and applications
Mixed problems and advanced applications |
By the end of the
lesson, the learner
should be able to:
Define geometric series and understand convergence Derive and apply geometric series formulas Handle finite and infinite geometric series Apply geometric series to practical situations |
Q/A on geometric series concepts using multiplication examples
Discussions on convergence and formula applications Solving geometric series problems including infinite cases Demonstrations using geometric sum patterns Explaining convergence using practical examples |
Chalk and blackboard, convergence demonstration materials, exercise books
Chalk and blackboard, mixed problem collections, exercise books |
KLB Mathematics Book Three Pg 216-219
|
|
3 | 4 |
Sequences and Series
Vectors (II) |
Sequences in nature and technology
Coordinates in two dimensions |
By the end of the
lesson, the learner
should be able to:
Identify mathematical patterns in natural phenomena Analyze sequences in biological and technological contexts Apply sequence concepts to environmental problems Appreciate mathematics in the natural and modern world |
Q/A on natural and technological patterns using examples
Discussions on biological sequences and digital applications Solving nature and technology-based problems Demonstrations using natural pattern examples Explaining mathematical beauty using real phenomena |
Chalk and blackboard, natural and technology examples, exercise books
Chalk and blackboard, squared paper or grid drawn on ground, exercise books |
KLB Mathematics Book Three Pg 207-219
|
|
3 | 5 |
Vectors (II)
|
Coordinates in three dimensions
Column and position vectors in three dimensions |
By the end of the
lesson, the learner
should be able to:
Identify the coordinates of a point in three dimensions Understand the three-dimensional coordinate system Plot points in 3D space systematically Apply 3D coordinates to spatial problems |
Q/A on 3D coordinate understanding using room corner references
Discussions on height, length, and width measurements Solving 3D coordinate problems using systematic approaches Demonstrations using classroom corners and building structures Explaining 3D visualization using physical room examples |
Chalk and blackboard, 3D models made from sticks and clay, exercise books
Chalk and blackboard, movement demonstration space, exercise books |
KLB Mathematics Book Three Pg 222
|
|
3 | 6 |
Vectors (II)
|
Position vectors and applications
Column vectors in terms of unit vectors i, j, k |
By the end of the
lesson, the learner
should be able to:
Calculate the position vector Apply position vectors to geometric problems Find distances using position vector methods Solve positioning problems systematically |
Q/A on position vector calculation using origin references
Discussions on position determination using coordinate methods Solving position vector problems using systematic calculation Demonstrations using fixed origin and variable endpoints Explaining position concepts using practical location examples |
Chalk and blackboard, origin marking systems, exercise books
Chalk and blackboard, direction indicators, unit vector reference charts, exercise books |
KLB Mathematics Book Three Pg 224
|
|
3 | 7 |
Vectors (II)
|
Vector operations using unit vectors
Magnitude of a vector in three dimensions |
By the end of the
lesson, the learner
should be able to:
Express vectors in terms of unit vectors Perform vector addition using unit vector notation Calculate vector subtraction with i, j, k components Apply scalar multiplication to unit vectors |
Q/A on vector operations using component-wise calculation
Discussions on systematic operation methods Solving vector operation problems using organized approaches Demonstrations using component separation and combination Explaining operation logic using algebraic reasoning |
Chalk and blackboard, component calculation aids, exercise books
Chalk and blackboard, 3D measurement aids, exercise books |
KLB Mathematics Book Three Pg 226-228
|
|
4 | 1 |
Vectors (II)
|
Magnitude applications and unit vectors
Parallel vectors Collinearity |
By the end of the
lesson, the learner
should be able to:
Calculate the magnitude of a vector in three dimensions Find unit vectors from given vectors Apply magnitude concepts to practical problems Use magnitude in vector normalization |
Q/A on magnitude and unit vector relationships
Discussions on normalization and direction finding Solving magnitude and unit vector problems Demonstrations using direction and length separation Explaining practical applications using navigation examples |
Chalk and blackboard, direction finding aids, exercise books
Chalk and blackboard, parallel line demonstrations, exercise books Chalk and blackboard, straight-line demonstrations, exercise books |
KLB Mathematics Book Three Pg 229-230
|
|
4 | 2 |
Vectors (II)
|
Advanced collinearity applications
Proportional division of a line |
By the end of the
lesson, the learner
should be able to:
Show that points are collinear Apply collinearity to complex geometric problems Integrate parallel and collinearity concepts Solve advanced alignment problems |
Q/A on advanced collinearity using complex scenarios
Discussions on geometric proof using vector methods Solving challenging collinearity problems Demonstrations using complex geometric constructions Explaining advanced applications using comprehensive examples |
Chalk and blackboard, complex geometric aids, exercise books
Chalk and blackboard, internal division models, exercise books |
KLB Mathematics Book Three Pg 232-234
|
|
4 | 3 |
Vectors (II)
|
External division of a line
Combined internal and external division |
By the end of the
lesson, the learner
should be able to:
Divide a line externally in the given ratio Apply the external division formula Distinguish between internal and external division Solve external division problems accurately |
Q/A on external division using systematic formula application
Discussions on external point calculation using vector methods Solving external division problems using careful approaches Demonstrations using external point construction examples Explaining external division using extended line concepts |
Chalk and blackboard, external division models, exercise books
Chalk and blackboard, combined division models, exercise books |
KLB Mathematics Book Three Pg 238-239
|
|
4 | 4 |
Vectors (II)
|
Ratio theorem
Advanced ratio theorem applications |
By the end of the
lesson, the learner
should be able to:
Express position vectors Apply the ratio theorem to geometric problems Use ratio theorem in complex calculations Find position vectors using ratio relationships |
Q/A on ratio theorem application using systematic methods
Discussions on position vector calculation using ratio methods Solving ratio theorem problems using organized approaches Demonstrations using ratio-based position finding Explaining theorem applications using logical reasoning |
Chalk and blackboard, ratio theorem aids, exercise books
Chalk and blackboard, advanced ratio models, exercise books |
KLB Mathematics Book Three Pg 240-242
|
|
4 | 5 |
Vectors (II)
|
Mid-point
Ratio theorem and midpoint integration |
By the end of the
lesson, the learner
should be able to:
Find the mid-points of the given vectors Apply midpoint formulas in vector contexts Use midpoint concepts in geometric problems Calculate midpoints systematically |
Q/A on midpoint calculation using vector averaging methods
Discussions on midpoint applications using geometric examples Solving midpoint problems using systematic approaches Demonstrations using midpoint construction and calculation Explaining midpoint concepts using practical examples |
Chalk and blackboard, midpoint demonstration aids, exercise books
Chalk and blackboard, complex problem materials, exercise books |
KLB Mathematics Book Three Pg 243
|
|
4 |
CAT |
|||||||
5 | 1 |
Vectors (II)
|
Advanced ratio theorem applications
Applications of vectors in geometry |
By the end of the
lesson, the learner
should be able to:
Use ratio theorem to find the given vectors Apply ratio theorem to challenging problems Handle complex geometric applications Demonstrate comprehensive ratio mastery |
Q/A on comprehensive ratio understanding using advanced problems
Discussions on complex ratio relationships Solving advanced ratio problems using systematic methods Demonstrations using sophisticated geometric constructions Explaining mastery using challenging applications |
Chalk and blackboard, advanced geometric aids, exercise books
Chalk and blackboard, parallelogram models, exercise books |
KLB Mathematics Book Three Pg 246-248
|
|
5 | 2 |
Vectors (II)
|
Rectangle diagonal applications
Advanced geometric applications |
By the end of the
lesson, the learner
should be able to:
Use vectors to show the diagonals of a rectangle Apply vector methods to rectangle properties Prove rectangle theorems using vectors Compare parallelogram and rectangle diagonal properties |
Q/A on rectangle properties using vector analysis
Discussions on diagonal relationships using vector methods Solving rectangle problems using systematic approaches Demonstrations using rectangle constructions and vector proofs Explaining rectangle properties using vector reasoning |
Chalk and blackboard, rectangle models, exercise books
Chalk and blackboard, advanced geometric models, exercise books |
KLB Mathematics Book Three Pg 248-250
|
|
5 | 3 |
Binomial Expansion
|
Binomial expansions up to power four
Binomial expansions up to power four (continued) |
By the end of the
lesson, the learner
should be able to:
Expand binomial function up to power four Apply systematic multiplication methods Recognize coefficient patterns in expansions Use multiplication to expand binomial expressions |
Q/A on algebraic multiplication using familiar expressions
Discussions on systematic expansion using step-by-step methods Solving basic binomial multiplication problems Demonstrations using area models and rectangular arrangements Explaining pattern recognition using organized layouts |
Chalk and blackboard, rectangular cutouts from paper, exercise books
Chalk and blackboard, squared paper for geometric models, exercise books |
KLB Mathematics Book Three Pg 256
|
|
5 | 4 |
Binomial Expansion
|
Pascal's triangle
Pascal's triangle applications |
By the end of the
lesson, the learner
should be able to:
Use Pascal's triangle Construct Pascal's triangle systematically Apply triangle coefficients for binomial expansions Recognize number patterns in the triangle |
Q/A on triangle construction using addition patterns
Discussions on coefficient relationships using triangle analysis Solving triangle construction and application problems Demonstrations using visual triangle building Explaining pattern connections using systematic observation |
Chalk and blackboard, triangular patterns drawn/cut from paper, exercise books
Chalk and blackboard, Pascal's triangle reference charts, exercise books |
KLB Mathematics Book Three Pg 256-257
|
|
5 | 5 |
Binomial Expansion
|
Pascal's triangle (continued)
Pascal's triangle advanced |
By the end of the
lesson, the learner
should be able to:
Use Pascal's triangle Apply triangle to complex expansion problems Handle higher powers using Pascal's triangle Integrate triangle concepts with algebraic expansion |
Q/A on advanced triangle applications using complex examples
Discussions on higher power expansion using triangle methods Solving challenging problems using Pascal's triangle Demonstrations using detailed triangle constructions Explaining integration using comprehensive examples |
Chalk and blackboard, advanced triangle patterns, exercise books
Chalk and blackboard, combination calculation aids, exercise books |
KLB Mathematics Book Three Pg 258-259
|
|
5 | 6 |
Binomial Expansion
|
Applications to numerical cases
Applications to numerical cases (continued) |
By the end of the
lesson, the learner
should be able to:
Use binomial expansion to solve numerical problems Apply expansions for numerical approximations Calculate values using binomial methods Understand practical applications of expansions |
Q/A on numerical applications using approximation techniques
Discussions on calculation shortcuts using expansion methods Solving numerical problems using binomial approaches Demonstrations using practical calculation scenarios Explaining approximation benefits using real examples |
Chalk and blackboard, simple calculation aids, exercise books
Chalk and blackboard, advanced calculation examples, exercise books |
KLB Mathematics Book Three Pg 259-260
|
|
5 | 7 |
Probability
|
Introduction
Experimental Probability |
By the end of the
lesson, the learner
should be able to:
Calculate the experimental probability Understand probability concepts in daily life Distinguish between certain and uncertain events Recognize probability situations |
Q/A on uncertain events from daily life experiences
Discussions on weather prediction and game outcomes Analyzing chance events using coin tossing and dice rolling Demonstrations using simple probability experiments Explaining probability language using familiar examples |
Chalk and blackboard, coins, dice made from cardboard, exercise books
Chalk and blackboard, coins, cardboard dice, tally charts, exercise books |
KLB Mathematics Book Three Pg 262-264
|
|
6 | 1 |
Probability
|
Experimental Probability applications
Range of Probability Measure |
By the end of the
lesson, the learner
should be able to:
Calculate the experimental probability Apply experimental methods to various scenarios Handle large sample experiments Analyze experimental probability patterns |
Q/A on advanced experimental techniques using extended trials
Discussions on sample size effects using comparative data Solving complex experimental problems using systematic methods Demonstrations using extended experimental procedures Explaining pattern analysis using accumulated data |
Chalk and blackboard, extended experimental materials, data recording sheets, exercise books
Chalk and blackboard, number line drawings, probability scale charts, exercise books |
KLB Mathematics Book Three Pg 262-264
|
|
6 | 2 |
Probability
|
Probability Space
Theoretical Probability Theoretical Probability advanced |
By the end of the
lesson, the learner
should be able to:
Calculate the probability space for the theoretical probability Define sample space systematically List all possible outcomes Apply sample space concepts |
Q/A on outcome listing using systematic enumeration
Discussions on complete outcome identification Solving sample space problems using organized listing Demonstrations using dice, cards, and spinner examples Explaining probability calculation using outcome counting |
Chalk and blackboard, playing cards (locally made), spinners from cardboard, exercise books
Chalk and blackboard, fair dice and coins, probability calculation aids, exercise books Chalk and blackboard, complex probability materials, advanced calculation aids, exercise books |
KLB Mathematics Book Three Pg 266-267
|
|
6 | 3 |
Probability
|
Theoretical Probability applications
Combined Events |
By the end of the
lesson, the learner
should be able to:
Calculate the probability space for the theoretical probability Apply theoretical concepts to real situations Solve practical probability problems Interpret results in meaningful contexts |
Q/A on practical probability using local examples
Discussions on real-world applications using community scenarios Solving application problems using theoretical methods Demonstrations using local games and practical situations Explaining practical interpretation using meaningful contexts |
Chalk and blackboard, local game examples, practical scenario materials, exercise books
Chalk and blackboard, playing cards, multiple dice, Venn diagram drawings, exercise books |
KLB Mathematics Book Three Pg 268-270
|
|
6 | 4 |
Probability
|
Combined Events OR probability
Independent Events |
By the end of the
lesson, the learner
should be able to:
Find the probability of a combined events Apply addition rule for OR events Calculate "A or B" probabilities Handle mutually exclusive events |
Q/A on addition rule application using systematic methods
Discussions on mutually exclusive identification and calculation Solving OR probability problems using organized approaches Demonstrations using card selection and event combination Explaining addition rule logic using Venn diagrams |
Chalk and blackboard, Venn diagram materials, card examples, exercise books
Chalk and blackboard, multiple coins and dice, independence demonstration materials, exercise books |
KLB Mathematics Book Three Pg 272-274
|
|
6 | 5 |
Probability
|
Independent Events advanced
Independent Events applications |
By the end of the
lesson, the learner
should be able to:
Find the probability of independent events Distinguish between independent and dependent events Apply conditional probability concepts Handle complex independence scenarios |
Q/A on independence verification using mathematical methods
Discussions on dependence concepts using card drawing examples Solving dependent and independent event problems using systematic approaches Demonstrations using replacement and non-replacement scenarios Explaining conditional probability using practical examples |
Chalk and blackboard, playing cards for replacement scenarios, multiple experimental setups, exercise books
Chalk and blackboard, complex experimental materials, advanced calculation aids, exercise books |
KLB Mathematics Book Three Pg 276-278
|
|
6 | 6 |
Probability
|
Tree Diagrams
Tree Diagrams advanced |
By the end of the
lesson, the learner
should be able to:
Draw tree diagrams to show the probability space Construct tree diagrams systematically Represent sequential events using trees Apply tree diagram methods |
Q/A on tree construction using step-by-step methods
Discussions on sequential event representation Solving basic tree diagram problems using systematic drawing Demonstrations using branching examples and visual organization Explaining tree structure using logical branching principles |
Chalk and blackboard, tree diagram templates, branching materials, exercise books
Chalk and blackboard, complex tree examples, detailed calculation aids, exercise books |
KLB Mathematics Book Three Pg 282
|
|
6 | 7 |
Compound Proportion and Rates of Work
|
Compound Proportions
Compound Proportions applications |
By the end of the
lesson, the learner
should be able to:
Find the compound proportions Understand compound proportion relationships Apply compound proportion methods systematically Solve problems involving multiple variables |
Q/A on compound relationships using practical examples
Discussions on multiple variable situations using local scenarios Solving compound proportion problems using systematic methods Demonstrations using business and trade examples Explaining compound proportion logic using step-by-step reasoning |
Chalk and blackboard, local business examples, calculators if available, exercise books
Chalk and blackboard, construction/farming examples, exercise books |
KLB Mathematics Book Three Pg 288-290
|
|
7 | 1 |
Compound Proportion and Rates of Work
|
Proportional Parts
Proportional Parts applications |
By the end of the
lesson, the learner
should be able to:
Calculate the proportional parts Understand proportional division concepts Apply proportional parts to sharing problems Solve distribution problems using proportional methods |
Q/A on proportional sharing using practical examples
Discussions on fair distribution using ratio concepts Solving proportional parts problems using systematic division Demonstrations using sharing scenarios and inheritance examples Explaining proportional distribution using logical reasoning |
Chalk and blackboard, sharing demonstration materials, exercise books
Chalk and blackboard, business partnership examples, exercise books |
KLB Mathematics Book Three Pg 291-293
|
|
7 | 2 |
Compound Proportion and Rates of Work
|
Rates of Work
Rates of Work and Mixtures |
By the end of the
lesson, the learner
should be able to:
Calculate the rate of work Understand work rate relationships Apply time-work-efficiency concepts Solve basic rate of work problems |
Q/A on work rate calculation using practical examples
Discussions on efficiency and time relationships using work scenarios Solving basic rate of work problems using systematic methods Demonstrations using construction and labor examples Explaining work rate concepts using practical work situations |
Chalk and blackboard, work scenario examples, exercise books
Chalk and blackboard, mixture demonstration materials, exercise books |
KLB Mathematics Book Three Pg 294-295
|
|
7 | 3 |
Graphical Methods
|
Tables of given relations
Graphs of given relations |
By the end of the
lesson, the learner
should be able to:
Draw tables of given relations Construct organized data tables systematically Prepare data for graphical representation Understand relationship between variables |
Q/A on table construction using systematic data organization
Discussions on variable relationships using practical examples Solving table preparation problems using organized methods Demonstrations using data collection and tabulation Explaining systematic data arrangement using logical procedures |
Chalk and blackboard, ruled paper for tables, exercise books
Chalk and blackboard, graph paper or grids, rulers, exercise books |
KLB Mathematics Book Three Pg 299
|
|
7 | 4 |
Graphical Methods
|
Tables and graphs integration
Introduction to cubic equations |
By the end of the
lesson, the learner
should be able to:
Draw tables and graphs of given relations Integrate table construction with graph plotting Analyze relationships using both methods Compare tabular and graphical representations |
Q/A on integrated table-graph construction using comprehensive methods
Discussions on data flow from tables to graphs Solving integrated problems using systematic approaches Demonstrations using complete data analysis procedures Explaining relationship analysis using combined methods |
Chalk and blackboard, graph paper, data examples, exercise books
Chalk and blackboard, cubic function examples, exercise books |
KLB Mathematics Book Three Pg 299-300
|
|
7 | 5 |
Graphical Methods
|
Graphical solution of cubic equations
Advanced cubic solutions |
By the end of the
lesson, the learner
should be able to:
Draw graphs of cubic equations Plot cubic curves accurately Use graphs to solve cubic equations Find roots using graphical methods |
Q/A on cubic curve plotting using systematic point plotting
Discussions on curve characteristics and root finding Solving cubic graphing problems using careful plotting Demonstrations using cubic curve construction Explaining root identification using graph analysis |
Chalk and blackboard, graph paper, cubic equation examples, exercise books
Chalk and blackboard, advanced graph examples, exercise books |
KLB Mathematics Book Three Pg 302-304
|
|
7 | 6 |
Graphical Methods
|
Introduction to rates of change
Average rates of change |
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Understand rate of change concepts Apply rate calculations to practical problems Interpret rate meanings in context |
Q/A on rate calculation using slope methods
Discussions on rate interpretation using practical examples Solving basic rate problems using systematic calculation Demonstrations using speed-time and distance examples Explaining rate concepts using practical analogies |
Chalk and blackboard, rate calculation examples, exercise books
Chalk and blackboard, graph paper, rate examples, exercise books |
KLB Mathematics Book Three Pg 304-306
|
|
7 | 7 |
Graphical Methods
|
Advanced average rates
Introduction to instantaneous rates |
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Handle complex rate scenarios Apply rates to business and scientific problems Integrate rate concepts with other topics |
Q/A on complex rate applications using advanced scenarios
Discussions on business and scientific rate applications Solving challenging rate problems using integrated methods Demonstrations using comprehensive rate examples Explaining advanced applications using detailed analysis |
Chalk and blackboard, advanced rate scenarios, exercise books
Chalk and blackboard, tangent line examples, exercise books |
KLB Mathematics Book Three Pg 304-310
|
|
8 | 1 |
Graphical Methods
|
Rate of change at an instant
Advanced instantaneous rates Empirical graphs Advanced empirical methods |
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Apply instantaneous rate methods systematically Use graphical techniques for instant rates Solve practical instantaneous rate problems |
Q/A on instantaneous rate calculation using graphical methods
Discussions on tangent line slope interpretation Solving instantaneous rate problems using systematic approaches Demonstrations using detailed tangent constructions Explaining practical applications using real scenarios |
Chalk and blackboard, detailed graph examples, exercise books
Chalk and blackboard, advanced rate examples, exercise books Chalk and blackboard, experimental data examples, exercise books Chalk and blackboard, complex data examples, exercise books |
KLB Mathematics Book Three Pg 310-311
|
|
8-9 |
END TERM 3 EXAMINATION |
Your Name Comes Here