Home






SCHEME OF WORK
Mathematics
Form 3 2025
TERM I
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 5
Quadratic Expressions and Equations
Factorisation of quadratic expressions
By the end of the lesson, the learner should be able to:
Factorize quadratic expressions
Write the perfect squares
Apply factorization methods to solve problems
Q/A on revision of linear expressions
Discussions on quadratic expression patterns
Solving problems using factorization
Demonstrations on factorization techniques
Explaining step-by-step methods
Calculators, charts showing factorization patterns
Calculators, factorization method charts
KLB Mathematics Book Three Pg 1
3 1
Quadratic Expressions and Equations
Completing squares
Solving quadratic expressions by completing square
Solving quadratic expressions by factorization
The quadratic formula
By the end of the lesson, the learner should be able to:
Complete the square for quadratic expressions
Write expressions in perfect square form
Identify missing terms in completing squares
Q/A on perfect square patterns
Discussions on completing square concept
Solving problems by completing squares
Demonstrations of completing square method
Explaining systematic approach
Calculators, perfect square charts
Calculators, vertex form examples
Calculators, equation solving guides
Calculators, method selection charts
Calculators, formula derivation charts
KLB Mathematics Book Three Pg 1-2
3 2
Quadratic Expressions and Equations
The quadratic formula
Formation of quadratic equations
Graphs of quadratic functions
By the end of the lesson, the learner should be able to:
Solve quadratic expressions using the quadratic formula
Apply formula to complex coefficients
Interpret discriminant values
Q/A on formula mastery
Discussions on discriminant meaning
Solving complex equations
Demonstrations of discriminant analysis
Explaining nature of roots
Calculators, discriminant interpretation guides
Calculators, word problem templates
Graph papers, calculators, plotting guides
KLB Mathematics Book Three Pg 7-9
3 3
Quadratic Expressions and Equations
Graphs of quadratic functions
Graphical solutions of quadratic equation
By the end of the lesson, the learner should be able to:
Draw graphs of quadratic functions
Identify vertex and axis of symmetry
Find intercepts from graphs
Q/A on graph plotting techniques
Discussions on graph features
Solving graphing problems
Demonstrations of feature identification
Explaining graph properties
Graph papers, calculators, rulers
KLB Mathematics Book Three Pg 12-15
3 4
Quadratic Expressions and Equations
Approximations and Errors
Graphical solutions of quadratic equation
Graphical solutions of simultaneous equations
Computing using calculators
By the end of the lesson, the learner should be able to:
Solve quadratic equations using the graphs
Verify algebraic solutions graphically
Estimate solutions from graphs
Q/A on solution verification
Discussions on estimation techniques
Solving complex graphical problems
Demonstrations of verification methods
Explaining accuracy in estimation
Graph papers, calculators, estimation guides
Graph papers, calculators, intersection analysis guides
Calculators, operation guides
KLB Mathematics Book Three Pg 17-19
3 5
Approximations and Errors
Computing using calculators
Approximation
By the end of the lesson, the learner should be able to:
Solve basic operations using calculators
Perform complex calculations accurately
Verify calculator results
Q/A on calculator accuracy
Discussions on verification methods
Solving complex computational problems
Demonstrations of result checking
Explaining calculation verification
Calculators, verification worksheets
Calculators, rounding charts
KLB Mathematics Book Three Pg 26-28
4 1
Approximations and Errors
Estimation
Accuracy and errors
Percentage error
By the end of the lesson, the learner should be able to:
Approximate values by truncation
Estimate values using appropriate methods
Compare estimation techniques
Q/A on estimation strategies
Discussions on truncation vs rounding
Solving estimation problems
Demonstrations of truncation methods
Explaining when to use different techniques
Calculators, estimation guides
Calculators, error calculation sheets
Calculators, percentage error worksheets
KLB Mathematics Book Three Pg 30
4 2
Approximations and Errors
Rounding off error and truncation error
Propagation of errors
By the end of the lesson, the learner should be able to:
Find the rounding off error
Calculate truncation error
Compare rounding and truncation errors
Q/A on error types
Discussions on error sources
Solving rounding and truncation error problems
Demonstrations of error comparison
Explaining error analysis
Calculators, error comparison charts
Calculators, error propagation guides
KLB Mathematics Book Three Pg 34
4 3
Approximations and Errors
Propagation of errors
Propagation of errors in multiplication
By the end of the lesson, the learner should be able to:
Find the propagation of errors in addition and subtraction
Apply error propagation to complex problems
Verify error calculations
Q/A on propagation mastery
Discussions on complex error scenarios
Solving advanced propagation problems
Demonstrations of verification methods
Explaining error validation
Calculators, verification worksheets
Calculators, multiplication error guides
KLB Mathematics Book Three Pg 35-36
4 4
Approximations and Errors
Propagation of errors in multiplication
Propagation of errors in division
Propagation of errors in division
By the end of the lesson, the learner should be able to:
Find the propagation of errors in multiplication
Solve complex multiplication error problems
Compare different error propagation methods
Q/A on advanced multiplication errors
Discussions on complex error scenarios
Solving challenging multiplication problems
Demonstrations of method comparison
Explaining optimal error calculation
Calculators, method comparison charts
Calculators, division error worksheets
Calculators, verification guides
KLB Mathematics Book Three Pg 36-37
4 5
Approximations and Errors
Trigonometry (II)
Word problems
The unit circle
By the end of the lesson, the learner should be able to:
Find the propagation of errors of a word problem
Apply error analysis to real-world situations
Solve comprehensive error problems
Q/A on chapter consolidation
Discussions on real-world applications
Solving comprehensive word problems
Demonstrations of problem-solving strategies
Explaining practical error analysis
Calculators, word problem sets, comprehensive review sheets
Calculators, protractors, rulers, pair of compasses
KLB Mathematics Book Three Pg 39-40
5 1
Trigonometry (II)
The unit circle
Trigonometric ratios of angles greater than 90°
Trigonometric ratios of angles greater than 90°
By the end of the lesson, the learner should be able to:
Solve problems using the unit circle
Apply unit circle to find trigonometric values
Use unit circle for angle measurement
Q/A on unit circle mastery
Discussions on practical applications
Solving trigonometric problems
Demonstrations of value finding
Explaining angle relationships
Calculators, protractors, rulers, pair of compasses
Calculators, quadrant charts
KLB Mathematics Book Three Pg 43-44
5 2
Trigonometry (II)
Trigonometric ratios of negative angles
Trigonometric ratios of angles greater than 360°
By the end of the lesson, the learner should be able to:
Find the trigonometric values of negative angles
Apply negative angle identities
Solve problems involving negative angles
Q/A on negative angle concepts
Discussions on angle direction
Solving negative angle problems
Demonstrations of identity applications
Explaining clockwise rotations
Geoboards, graph books, calculators
KLB Mathematics Book Three Pg 48-49
5 3
Trigonometry (II)
Use of mathematical tables
Use of calculators
By the end of the lesson, the learner should be able to:
Use mathematical tables to find sine and cosine
Read trigonometric tables accurately
Apply table interpolation methods
Q/A on table reading skills
Discussions on table structure
Solving problems using tables
Demonstrations of interpolation
Explaining table accuracy
Mathematical tables, calculators
Calculators, function guides
KLB Mathematics Book Three Pg 51-55
5 4
Trigonometry (II)
Radian measure
Simple trigonometric graphs
By the end of the lesson, the learner should be able to:
Convert degrees to radians and vice versa
Apply radian measure in calculations
Understand radian-degree relationships
Q/A on angle measurement systems
Discussions on radian concepts
Solving conversion problems
Demonstrations of conversion methods
Explaining radian applications
Calculators, conversion charts
Calculators, graph papers, plotting guides
KLB Mathematics Book Three Pg 58-61
5 5
Trigonometry (II)
Graphs of cosines
Graphs of tan
By the end of the lesson, the learner should be able to:
Draw tables for cosine of values
Plot graphs of cosine functions
Compare sine and cosine graphs
Q/A on cosine properties
Discussions on graph relationships
Solving cosine graphing problems
Demonstrations of cosine plotting
Explaining phase relationships
Calculators, graph papers, plotting guides
KLB Mathematics Book Three Pg 63-64
6 1
Trigonometry (II)
The sine rule
Cosine rule
Problem solving
By the end of the lesson, the learner should be able to:
State the sine rule
Apply sine rule to find solution of triangles
Solve triangles using sine rule
Q/A on triangle properties
Discussions on sine rule applications
Solving triangle problems
Demonstrations of rule application
Explaining ambiguous case
Calculators, triangle worksheets
Calculators, comprehensive problem sets, real-world examples
KLB Mathematics Book Three Pg 65-70
6 2
Surds
Rational and irrational numbers
Order of surds and simplification
By the end of the lesson, the learner should be able to:
Classify numbers as rational and irrational numbers
Identify rational and irrational numbers
Distinguish between rational and irrational forms
Q/A on number classification concepts
Discussions on rational vs irrational properties
Solving classification problems
Demonstrations of number identification
Explaining decimal representations
Calculators, number classification charts
Calculators, surd order examples
KLB Mathematics Book Three Pg 78
6 3
Surds
Simplification of surds practice
Addition of surds
Subtraction of surds
By the end of the lesson, the learner should be able to:
Simplify surds using factorization
Express surds in simplest form
Apply systematic simplification methods
Q/A on factorization techniques
Discussions on factor identification
Solving extensive simplification problems
Demonstrations of step-by-step methods
Explaining perfect square extraction
Calculators, factor trees, simplification worksheets
Calculators, addition rule charts
Calculators, subtraction worksheets
KLB Mathematics Book Three Pg 79-80
6 4
Surds
Multiplication of surds
Division of surds
By the end of the lesson, the learner should be able to:
Multiply surds of the same order
Apply multiplication rules to surds
Simplify products of surds
Q/A on multiplication concepts
Discussions on surd multiplication laws
Solving multiplication problems
Demonstrations of product simplification
Explaining multiplication principles
Calculators, multiplication rule guides
Calculators, division worksheets
KLB Mathematics Book Three Pg 80-82
6 5
Surds
Rationalizing the denominator
Advanced rationalization techniques
By the end of the lesson, the learner should be able to:
Rationalize the denominator of fractions
Apply rationalization techniques
Simplify expressions with surd denominators
Q/A on rationalization concepts
Discussions on denominator clearing
Solving rationalization problems
Demonstrations of conjugate methods
Explaining rationalization importance
Calculators, rationalization guides
Calculators, advanced technique sheets
KLB Mathematics Book Three Pg 85-87
7 1
Further Logarithms
Introduction
Laws of logarithms
Laws of logarithms
By the end of the lesson, the learner should be able to:
Use calculators to find the logarithm of numbers
Understand logarithmic notation and concepts
Apply basic logarithmic principles
Q/A on exponential and logarithmic relationships
Discussions on logarithm definition and properties
Solving basic logarithm problems
Demonstrations of calculator usage
Explaining logarithm-exponential connections
Calculators, logarithm definition charts
Calculators, logarithm law charts
Calculators, advanced law worksheets
KLB Mathematics Book Three Pg 89
7 2
Further Logarithms
Laws of logarithms
Logarithmic equations and expressions
By the end of the lesson, the learner should be able to:
Use laws of logarithms to solve problems
Master all logarithmic laws comprehensively
Apply laws to challenging mathematical problems
Q/A on comprehensive law understanding
Discussions on law selection strategies
Solving challenging logarithmic problems
Demonstrations of optimal law application
Explaining problem-solving approaches
Calculators, challenging problem sets
Calculators, equation-solving guides
KLB Mathematics Book Three Pg 90-93
7 3
Further Logarithms
Logarithmic equations and expressions
Further computation using logarithms
Further computation using logarithms
By the end of the lesson, the learner should be able to:
Solve the logarithmic equations and expressions
Handle complex logarithmic equations
Apply advanced solution techniques
Q/A on advanced equation methods
Discussions on complex equation structures
Solving challenging logarithmic equations
Demonstrations of sophisticated techniques
Explaining advanced solution strategies
Calculators, advanced equation worksheets
Calculators, computation worksheets
Calculators, intermediate problem sets
KLB Mathematics Book Three Pg 93-95
7 4
Further Logarithms
Further computation using logarithms
Problem solving
By the end of the lesson, the learner should be able to:
Solve problems involving logarithms
Master advanced logarithmic computations
Apply logarithms to complex mathematical scenarios
Q/A on advanced computational mastery
Discussions on complex calculation strategies
Solving advanced computation problems
Demonstrations of sophisticated methods
Explaining optimal computational approaches
Calculators, advanced computation guides
Calculators, comprehensive problem sets
KLB Mathematics Book Three Pg 95-96
7 5
Further Logarithms
Matrices
Matrices
Matrices
Problem solving
Introduction and real-life applications
Order of a matrix and elements
Square matrices, row and column matrices
By the end of the lesson, the learner should be able to:
Solve problems involving logarithms
Apply logarithmic concepts to real-world situations
Handle practical logarithmic applications
Q/A on real-world applications
Discussions on practical problem contexts
Solving real-world logarithmic problems
Demonstrations of practical applications
Explaining everyday logarithm usage
Calculators, real-world application examples
Old newspapers with league tables, chalk and blackboard, exercise books
Chalk and blackboard, ruled exercise books, class register
Paper cutouts, chalk and blackboard, counters or bottle tops
KLB Mathematics Book Three Pg 97
8 1
Matrices
Addition of matrices
Subtraction of matrices
Combined addition and subtraction
Scalar multiplication
Introduction to matrix multiplication
By the end of the lesson, the learner should be able to:
Add matrices of the same order
Apply matrix addition rules correctly
Understand compatibility for addition
Solve matrix addition problems systematically
Q/A on matrix addition using number examples
Discussions on element-wise addition using counters
Solving basic addition using blackboard work
Demonstrations using physical counting objects
Explaining compatibility using size comparisons
Counters or stones, chalk and blackboard, exercise books
Chalk and blackboard, exercise books, number cards made from cardboard
Chalk and blackboard, exercise books, locally made operation cards
Beans or stones for grouping, chalk and blackboard, exercise books
Chalk and blackboard, rulers for tracing, exercise books
KLB Mathematics Book Three Pg 170-171
8 2
Matrices
Matrix multiplication (2×2 matrices)
Matrix multiplication (larger matrices)
Properties of matrix multiplication
By the end of the lesson, the learner should be able to:
Multiply 2×2 matrices systematically
Apply correct multiplication procedures
Calculate matrix products accurately
Understand result matrix dimensions
Q/A on 2×2 matrix multiplication using simple numbers
Discussions on systematic calculation methods
Solving 2×2 problems using step-by-step approach
Demonstrations using organized blackboard layout
Explaining product formation using grid method
Chalk and blackboard, exercise books, homemade grid templates
Chalk and blackboard, large sheets of paper for working, exercise books
Chalk and blackboard, exercise books, cardboard for property cards
KLB Mathematics Book Three Pg 176-179
8 3
Matrices
Real-world matrix multiplication applications
Identity matrix
By the end of the lesson, the learner should be able to:
Apply matrix multiplication to practical problems
Solve business and economic applications
Calculate costs, revenues, and quantities
Interpret matrix multiplication results
Q/A on practical applications using local business examples
Discussions on market problems using familiar contexts
Solving real-world problems using matrix methods
Demonstrations using shop keeper scenarios
Explaining result interpretation using meaningful contexts
Chalk and blackboard, local price lists, exercise books
Chalk and blackboard, exercise books, pattern cards made from paper
KLB Mathematics Book Three Pg 176-179
8 4
Matrices
Determinant of 2×2 matrices
Inverse of 2×2 matrices - theory
Inverse of 2×2 matrices - practice
By the end of the lesson, the learner should be able to:
Calculate determinants of 2×2 matrices
Apply the determinant formula correctly
Understand geometric interpretation of determinants
Use determinants to classify matrices
Q/A on determinant calculation using cross multiplication
Discussions on formula application using memory aids
Solving determinant problems using systematic approach
Demonstrations using cross pattern method
Explaining geometric meaning using area concepts
Chalk and blackboard, exercise books, crossed sticks for demonstration
Chalk and blackboard, exercise books, fraction examples
Chalk and blackboard, exercise books, scrap paper for verification
KLB Mathematics Book Three Pg 183
8 5
Matrices
Introduction to solving simultaneous equations
Solving 2×2 simultaneous equations using matrices
By the end of the lesson, the learner should be able to:
Understand matrix representation of simultaneous equations
Identify coefficient and constant matrices
Set up matrix equations correctly
Recognize the structure of linear systems
Q/A on equation representation using familiar equations
Discussions on coefficient identification using examples
Solving setup problems using systematic approach
Demonstrations using equation breakdown method
Explaining structure using organized layout
Chalk and blackboard, exercise books, equation examples from previous topics
Chalk and blackboard, exercise books, previous elimination method examples
KLB Mathematics Book Three Pg 188-189
9 1
Matrices
Advanced simultaneous equation problems
Matrix applications in real-world problems
By the end of the lesson, the learner should be able to:
Solve complex simultaneous equation systems
Handle systems with no solution or infinite solutions
Interpret determinant values in solution context
Apply matrix methods to word problems
Q/A on complex systems using special cases
Discussions on solution types using geometric interpretation
Solving challenging problems using complete analysis
Demonstrations using classification methods
Explaining geometric meaning using line concepts
Chalk and blackboard, exercise books, graph paper if available
Chalk and blackboard, local business examples, exercise books
KLB Mathematics Book Three Pg 188-190
9 2
Matrices
Formulae and Variations
Transpose of matrices
Matrix equation solving
Introduction to formulae
By the end of the lesson, the learner should be able to:
Define and calculate matrix transpose
Understand transpose properties
Apply transpose operations correctly
Solve problems involving transpose
Q/A on transpose concepts using reflection ideas
Discussions on row-column interchange using visual methods
Solving transpose problems using systematic approach
Demonstrations using flip and rotate concepts
Explaining properties using symmetry ideas
Chalk and blackboard, exercise books, paper cutouts for demonstration
Chalk and blackboard, exercise books, algebra reference examples
Chalk and blackboard, measuring tape or string, exercise books
KLB Mathematics Book Three Pg 170-174
9 3
Formulae and Variations
Subject of a formula - basic cases
Subject of a formula - intermediate cases
By the end of the lesson, the learner should be able to:
Make simple variables the subject of formulae
Apply inverse operations to rearrange formulae
Understand the concept of subject change
Solve basic subject transformation problems
Q/A on inverse operations using number examples
Discussions on formula rearrangement using balance method
Solving basic subject change problems using step-by-step approach
Demonstrations using see-saw balance analogy
Explaining inverse operations using practical examples
Chalk and blackboard, simple balance (stones and stick), exercise books
Chalk and blackboard, fraction strips made from paper, exercise books
KLB Mathematics Book Three Pg 191-193
9 4
Formulae and Variations
Subject of a formula - advanced cases
Applications of formula manipulation
Introduction to variation
By the end of the lesson, the learner should be able to:
Make variables subject in complex formulae
Handle square roots and quadratic expressions
Apply advanced algebraic manipulation
Solve challenging subject transformation problems
Q/A on advanced manipulation using careful steps
Discussions on square root handling using examples
Solving complex problems using systematic approach
Demonstrations using detailed blackboard work
Explaining quadratic handling using factoring
Chalk and blackboard, squared paper patterns, exercise books
Chalk and blackboard, local measurement tools, exercise books
Chalk and blackboard, local price lists from markets, exercise books
KLB Mathematics Book Three Pg 191-193
9 5
Formulae and Variations
Sequences and Series
Direct variation - introduction
Introduction to sequences and finding terms
By the end of the lesson, the learner should be able to:
Understand direct proportionality concepts
Recognize direct variation patterns
Use direct variation notation correctly
Calculate constants of proportionality
Q/A on direct relationships using simple examples
Discussions on proportional changes using market scenarios
Solving basic direct variation problems
Demonstrations using doubling and tripling examples
Explaining proportionality using ratio concepts
Chalk and blackboard, beans or stones for counting, exercise books
Chalk and blackboard, stones or beans for patterns, exercise books
KLB Mathematics Book Three Pg 194-196
10 1
Sequences and Series
General term of sequences and applications
Arithmetic sequences and nth term
Arithmetic sequence applications
By the end of the lesson, the learner should be able to:
Develop general rules for sequences
Express the nth term using algebraic notation
Find specific terms using general formulas
Apply sequence concepts to practical problems
Q/A on rule formulation using systematic approach
Discussions on algebraic expression development
Solving general term and application problems
Demonstrations using position-value relationships
Explaining practical relevance using community examples
Chalk and blackboard, numbered cards made from paper, exercise books
Chalk and blackboard, measuring tape or string, exercise books
Chalk and blackboard, local employment/savings examples, exercise books
KLB Mathematics Book Three Pg 207-208
10 2
Sequences and Series
Geometric sequences and nth term
Geometric sequence applications
By the end of the lesson, the learner should be able to:
Define geometric sequences and common ratios
Calculate common ratios correctly
Derive and apply the geometric nth term formula
Understand exponential growth patterns
Q/A on geometric patterns using multiplication examples
Discussions on ratio-based progressions and formula derivation
Solving geometric sequence problems systematically
Demonstrations using doubling and scaling examples
Explaining exponential structure using practical examples
Chalk and blackboard, objects for doubling demonstrations, exercise books
Chalk and blackboard, population/growth data examples, exercise books
KLB Mathematics Book Three Pg 211-213
10 3
Sequences and Series
Arithmetic series and sum formula
Geometric series and applications
By the end of the lesson, the learner should be able to:
Define arithmetic series as sums of sequences
Derive the sum formula for arithmetic series
Apply the arithmetic series formula systematically
Calculate sums efficiently using the formula
Q/A on series concepts using summation examples
Discussions on sequence-to-series relationships and formula derivation
Solving arithmetic series problems using step-by-step approach
Demonstrations using cumulative sum examples
Explaining derivation logic using algebraic reasoning
Chalk and blackboard, counting materials for summation, exercise books
Chalk and blackboard, convergence demonstration materials, exercise books
KLB Mathematics Book Three Pg 214-215
10 4
Sequences and Series
Probability
Mixed problems and advanced applications
Sequences in nature and technology
Introduction
By the end of the lesson, the learner should be able to:
Combine arithmetic and geometric concepts
Solve complex mixed sequence and series problems
Apply appropriate methods for different types
Model real-world situations using mathematical sequences
Q/A on problem type identification using systematic analysis
Discussions on method selection and comprehensive applications
Solving mixed problems using appropriate techniques
Demonstrations using interdisciplinary scenarios
Explaining method choice using logical reasoning
Chalk and blackboard, mixed problem collections, exercise books
Chalk and blackboard, natural and technology examples, exercise books
Chalk and blackboard, coins, dice made from cardboard, exercise books
KLB Mathematics Book Three Pg 207-219
10 5
Probability
Experimental Probability
Experimental Probability applications
By the end of the lesson, the learner should be able to:
Calculate the experimental probability
Conduct probability experiments systematically
Record and analyze experimental data
Compare experimental results with expectations
Q/A on frequency counting using repeated experiments
Discussions on trial repetition and result recording
Solving experimental probability problems using data collection
Demonstrations using coin toss and dice roll experiments
Explaining frequency ratio calculations using practical examples
Chalk and blackboard, coins, cardboard dice, tally charts, exercise books
Chalk and blackboard, extended experimental materials, data recording sheets, exercise books
KLB Mathematics Book Three Pg 262-264
11 1
Probability
Range of Probability Measure
Probability Space
Theoretical Probability
By the end of the lesson, the learner should be able to:
Calculate the range of probability measure
Express probabilities on scale from 0 to 1
Convert between fractions, decimals, and percentages
Interpret probability values correctly
Q/A on probability scale using number line representations
Discussions on probability conversion between forms
Solving probability scale problems using systematic methods
Demonstrations using probability line and scale examples
Explaining scale interpretation using practical scenarios
Chalk and blackboard, number line drawings, probability scale charts, exercise books
Chalk and blackboard, playing cards (locally made), spinners from cardboard, exercise books
Chalk and blackboard, fair dice and coins, probability calculation aids, exercise books
KLB Mathematics Book Three Pg 265-266
11 2
Probability
Theoretical Probability advanced
Theoretical Probability applications
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Apply theoretical probability to complex problems
Handle multiple outcome scenarios
Solve advanced theoretical problems
Q/A on advanced theoretical applications using complex scenarios
Discussions on multiple outcome analysis using systematic methods
Solving challenging theoretical problems using organized approaches
Demonstrations using complex probability setups
Explaining advanced theoretical concepts using detailed reasoning
Chalk and blackboard, complex probability materials, advanced calculation aids, exercise books
Chalk and blackboard, local game examples, practical scenario materials, exercise books
KLB Mathematics Book Three Pg 268-270
11 3
Probability
Combined Events
Combined Events OR probability
By the end of the lesson, the learner should be able to:
Find the probability of a combined events
Understand compound events and combinations
Distinguish between different event types
Apply basic combination rules
Q/A on event combination using practical examples
Discussions on exclusive and inclusive event identification
Solving basic combined event problems using visual methods
Demonstrations using card drawing and dice rolling combinations
Explaining combination principles using Venn diagrams
Chalk and blackboard, playing cards, multiple dice, Venn diagram drawings, exercise books
Chalk and blackboard, Venn diagram materials, card examples, exercise books
KLB Mathematics Book Three Pg 272-273
11 4
Probability
Independent Events
Independent Events advanced
Independent Events applications
By the end of the lesson, the learner should be able to:
Find the probability of independent events
Apply multiplication rule for independent events
Calculate "A and B" probabilities
Understand independence concepts
Q/A on multiplication rule using independent event examples
Discussions on independence identification and verification
Solving AND probability problems using systematic calculation
Demonstrations using multiple coin tosses and dice combinations
Explaining multiplication rule using logical reasoning
Chalk and blackboard, multiple coins and dice, independence demonstration materials, exercise books
Chalk and blackboard, playing cards for replacement scenarios, multiple experimental setups, exercise books
Chalk and blackboard, complex experimental materials, advanced calculation aids, exercise books
KLB Mathematics Book Three Pg 274-275
11 5
Probability
Tree Diagrams
Tree Diagrams advanced
By the end of the lesson, the learner should be able to:
Draw tree diagrams to show the probability space
Construct tree diagrams systematically
Represent sequential events using trees
Apply tree diagram methods
Q/A on tree construction using step-by-step methods
Discussions on sequential event representation
Solving basic tree diagram problems using systematic drawing
Demonstrations using branching examples and visual organization
Explaining tree structure using logical branching principles
Chalk and blackboard, tree diagram templates, branching materials, exercise books
Chalk and blackboard, complex tree examples, detailed calculation aids, exercise books
KLB Mathematics Book Three Pg 282
12 1
Graphical Methods
Tables of given relations
Graphs of given relations
Tables and graphs integration
By the end of the lesson, the learner should be able to:
Draw tables of given relations
Construct organized data tables systematically
Prepare data for graphical representation
Understand relationship between variables
Q/A on table construction using systematic data organization
Discussions on variable relationships using practical examples
Solving table preparation problems using organized methods
Demonstrations using data collection and tabulation
Explaining systematic data arrangement using logical procedures
Chalk and blackboard, ruled paper for tables, exercise books
Chalk and blackboard, graph paper or grids, rulers, exercise books
Chalk and blackboard, graph paper, data examples, exercise books
KLB Mathematics Book Three Pg 299
12 2
Graphical Methods
Introduction to cubic equations
Graphical solution of cubic equations
By the end of the lesson, the learner should be able to:
Draw tables of cubic functions
Understand cubic equation characteristics
Prepare cubic function data systematically
Recognize cubic curve patterns
Q/A on cubic function evaluation using systematic calculation
Discussions on cubic equation properties using mathematical analysis
Solving cubic table preparation using organized methods
Demonstrations using cubic function examples
Explaining cubic characteristics using pattern recognition
Chalk and blackboard, cubic function examples, exercise books
Chalk and blackboard, graph paper, cubic equation examples, exercise books
KLB Mathematics Book Three Pg 301
12 3
Graphical Methods
Advanced cubic solutions
Introduction to rates of change
By the end of the lesson, the learner should be able to:
Draw graphs of cubic equations
Apply graphical methods to complex cubic problems
Handle multiple root scenarios
Verify solutions using graphical analysis
Q/A on advanced cubic graphing using complex examples
Discussions on multiple root identification using graph analysis
Solving challenging cubic problems using systematic methods
Demonstrations using detailed cubic constructions
Explaining verification methods using graphical checking
Chalk and blackboard, advanced graph examples, exercise books
Chalk and blackboard, rate calculation examples, exercise books
KLB Mathematics Book Three Pg 302-304
12 4
Graphical Methods
Average rates of change
Advanced average rates
Introduction to instantaneous rates
By the end of the lesson, the learner should be able to:
Calculate the average rates of change
Apply average rate methods to various functions
Use graphical methods for rate calculation
Solve practical rate problems
Q/A on average rate calculation using graphical methods
Discussions on rate applications using real-world scenarios
Solving average rate problems using systematic approaches
Demonstrations using graph-based rate calculation
Explaining practical applications using meaningful contexts
Chalk and blackboard, graph paper, rate examples, exercise books
Chalk and blackboard, advanced rate scenarios, exercise books
Chalk and blackboard, tangent line examples, exercise books
KLB Mathematics Book Three Pg 304-306
12 5
Graphical Methods
Rate of change at an instant
Advanced instantaneous rates
Empirical graphs
Advanced empirical methods
By the end of the lesson, the learner should be able to:
Calculate the rate of change at an instant
Apply instantaneous rate methods systematically
Use graphical techniques for instant rates
Solve practical instantaneous rate problems
Q/A on instantaneous rate calculation using graphical methods
Discussions on tangent line slope interpretation
Solving instantaneous rate problems using systematic approaches
Demonstrations using detailed tangent constructions
Explaining practical applications using real scenarios
Chalk and blackboard, detailed graph examples, exercise books
Chalk and blackboard, advanced rate examples, exercise books
Chalk and blackboard, experimental data examples, exercise books
Chalk and blackboard, complex data examples, exercise books
KLB Mathematics Book Three Pg 310-311

Your Name Comes Here


Download

Feedback