Home






SCHEME OF WORK
Mathematics
Form 3 2025
TERM II
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 1
Approximations and Errors
Computing using calculators
Approximation
By the end of the lesson, the learner should be able to:
Solve basic operations using calculators
Use calculator functions effectively
Apply calculator to mathematical computations
Q/A on calculator familiarity
Discussions on calculator operations
Solving basic arithmetic problems
Demonstrations of calculator functions
Explaining proper calculator usage
Calculators, operation guides
Calculators, rounding charts
KLB Mathematics Book Three Pg 24-26
2 2
Approximations and Errors
Estimation
Accuracy and errors
By the end of the lesson, the learner should be able to:
Approximate values by truncation
Estimate values using appropriate methods
Compare estimation techniques
Q/A on estimation strategies
Discussions on truncation vs rounding
Solving estimation problems
Demonstrations of truncation methods
Explaining when to use different techniques
Calculators, estimation guides
Calculators, error calculation sheets
KLB Mathematics Book Three Pg 30
2 3
Approximations and Errors
Percentage error
By the end of the lesson, the learner should be able to:
Find the percentage error of a given value
Calculate percentage error accurately
Interpret percentage error results
Q/A on percentage concepts
Discussions on percentage error meaning
Solving percentage error problems
Demonstrations of percentage calculations
Explaining error interpretation
Calculators, percentage error worksheets
KLB Mathematics Book Three Pg 32-34
2 4
Approximations and Errors
Rounding off error and truncation error
Propagation of errors
By the end of the lesson, the learner should be able to:
Find the rounding off error
Calculate truncation error
Compare rounding and truncation errors
Q/A on error types
Discussions on error sources
Solving rounding and truncation error problems
Demonstrations of error comparison
Explaining error analysis
Calculators, error comparison charts
Calculators, error propagation guides
KLB Mathematics Book Three Pg 34
2 5
Approximations and Errors
Propagation of errors
By the end of the lesson, the learner should be able to:
Find the propagation of errors in addition and subtraction
Apply error propagation to complex problems
Verify error calculations
Q/A on propagation mastery
Discussions on complex error scenarios
Solving advanced propagation problems
Demonstrations of verification methods
Explaining error validation
Calculators, verification worksheets
KLB Mathematics Book Three Pg 35-36
2 6
Approximations and Errors
Propagation of errors in multiplication
By the end of the lesson, the learner should be able to:
Find the propagation of errors in multiplication
Calculate relative errors in products
Apply multiplication error rules
Q/A on multiplication error concepts
Discussions on product error calculation
Solving multiplication error problems
Demonstrations of relative error computation
Explaining multiplication error principles
Calculators, multiplication error guides
Calculators, method comparison charts
KLB Mathematics Book Three Pg 36-37
2 7
Approximations and Errors
Propagation of errors in division
By the end of the lesson, the learner should be able to:
Find the propagation of errors in division
Calculate errors in quotients
Apply division error rules
Q/A on division error concepts
Discussions on quotient error calculation
Solving division error problems
Demonstrations of division error methods
Explaining division error principles
Calculators, division error worksheets
Calculators, verification guides
KLB Mathematics Book Three Pg 37-38
3 1
Trigonometry (II)
The unit circle
By the end of the lesson, the learner should be able to:
Draw the unit circle
Identify coordinates on the unit circle
Understand the unit circle concept
Q/A on basic circle properties
Discussions on unit circle construction
Solving problems using unit circle
Demonstrations of circle drawing
Explaining unit circle applications
Calculators, protractors, rulers, pair of compasses
KLB Mathematics Book Three Pg 41-42
3 2
Trigonometry (II)
The unit circle
Trigonometric ratios of angles greater than 90°
By the end of the lesson, the learner should be able to:
Solve problems using the unit circle
Apply unit circle to find trigonometric values
Use unit circle for angle measurement
Q/A on unit circle mastery
Discussions on practical applications
Solving trigonometric problems
Demonstrations of value finding
Explaining angle relationships
Calculators, protractors, rulers, pair of compasses
KLB Mathematics Book Three Pg 43-44
3 3
Trigonometry (II)
Trigonometric ratios of angles greater than 90°
Trigonometric ratios of negative angles
By the end of the lesson, the learner should be able to:
Find the trigonometric values of angles
Solve problems with angles in different quadrants
Apply ASTC rule for sign determination
Q/A on quadrant properties
Discussions on sign conventions
Solving multi-quadrant problems
Demonstrations of ASTC rule
Explaining trigonometric signs
Calculators, quadrant charts
Geoboards, graph books, calculators
KLB Mathematics Book Three Pg 46-47
3 4
Trigonometry (II)
Trigonometric ratios of angles greater than 360°
By the end of the lesson, the learner should be able to:
Find the trigonometric values of angles greater than 360°
Apply coterminal angle concepts
Reduce angles to standard position
Q/A on angle reduction concepts
Discussions on coterminal angles
Solving extended angle problems
Demonstrations of angle reduction
Explaining periodic properties
Geoboards, graph books, calculators
KLB Mathematics Book Three Pg 49-51
3 5
Trigonometry (II)
Use of mathematical tables
By the end of the lesson, the learner should be able to:
Use mathematical tables to find sine and cosine
Read trigonometric tables accurately
Apply table interpolation methods
Q/A on table reading skills
Discussions on table structure
Solving problems using tables
Demonstrations of interpolation
Explaining table accuracy
Mathematical tables, calculators
KLB Mathematics Book Three Pg 51-55
3 6
Trigonometry (II)
Use of calculators
By the end of the lesson, the learner should be able to:
Use calculators to find sine, cosine and tan
Apply calculator functions for trigonometry
Verify calculator accuracy
Q/A on calculator trigonometric functions
Discussions on calculator modes
Solving problems using calculators
Demonstrations of function keys
Explaining degree vs radian modes
Calculators, function guides
KLB Mathematics Book Three Pg 56-58
3 7
Trigonometry (II)
Radian measure
Simple trigonometric graphs
By the end of the lesson, the learner should be able to:
Convert degrees to radians and vice versa
Apply radian measure in calculations
Understand radian-degree relationships
Q/A on angle measurement systems
Discussions on radian concepts
Solving conversion problems
Demonstrations of conversion methods
Explaining radian applications
Calculators, conversion charts
Calculators, graph papers, plotting guides
KLB Mathematics Book Three Pg 58-61
4 1
Trigonometry (II)
Graphs of cosines
Graphs of tan
By the end of the lesson, the learner should be able to:
Draw tables for cosine of values
Plot graphs of cosine functions
Compare sine and cosine graphs
Q/A on cosine properties
Discussions on graph relationships
Solving cosine graphing problems
Demonstrations of cosine plotting
Explaining phase relationships
Calculators, graph papers, plotting guides
KLB Mathematics Book Three Pg 63-64
4 2
Trigonometry (II)
The sine rule
By the end of the lesson, the learner should be able to:
State the sine rule
Apply sine rule to find solution of triangles
Solve triangles using sine rule
Q/A on triangle properties
Discussions on sine rule applications
Solving triangle problems
Demonstrations of rule application
Explaining ambiguous case
Calculators, triangle worksheets
KLB Mathematics Book Three Pg 65-70
4 3
Trigonometry (II)
Cosine rule
Problem solving
By the end of the lesson, the learner should be able to:
State the cosine rule
Apply cosine rule to find solution of triangles
Choose appropriate rule for triangle solving
Q/A on cosine rule concepts
Discussions on rule selection
Solving complex triangle problems
Demonstrations of cosine rule
Explaining when to use each rule
Calculators, triangle worksheets
Calculators, comprehensive problem sets, real-world examples
KLB Mathematics Book Three Pg 71-75
4 4
Surds
Rational and irrational numbers
Order of surds and simplification
By the end of the lesson, the learner should be able to:
Classify numbers as rational and irrational numbers
Identify rational and irrational numbers
Distinguish between rational and irrational forms
Q/A on number classification concepts
Discussions on rational vs irrational properties
Solving classification problems
Demonstrations of number identification
Explaining decimal representations
Calculators, number classification charts
Calculators, surd order examples
KLB Mathematics Book Three Pg 78
4 5
Surds
Simplification of surds practice
By the end of the lesson, the learner should be able to:
Simplify surds using factorization
Express surds in simplest form
Apply systematic simplification methods
Q/A on factorization techniques
Discussions on factor identification
Solving extensive simplification problems
Demonstrations of step-by-step methods
Explaining perfect square extraction
Calculators, factor trees, simplification worksheets
KLB Mathematics Book Three Pg 79-80
4 6
Surds
Addition of surds
Subtraction of surds
By the end of the lesson, the learner should be able to:
Add surds with like terms
Combine surds of the same order
Simplify surd addition expressions
Q/A on like term concepts
Discussions on surd addition rules
Solving addition problems systematically
Demonstrations of combining techniques
Explaining when surds can be added
Calculators, addition rule charts
Calculators, subtraction worksheets
KLB Mathematics Book Three Pg 79-80
4 7
Surds
Multiplication of surds
By the end of the lesson, the learner should be able to:
Multiply surds of the same order
Apply multiplication rules to surds
Simplify products of surds
Q/A on multiplication concepts
Discussions on surd multiplication laws
Solving multiplication problems
Demonstrations of product simplification
Explaining multiplication principles
Calculators, multiplication rule guides
KLB Mathematics Book Three Pg 80-82
5 1
Surds
Division of surds
Rationalizing the denominator
By the end of the lesson, the learner should be able to:
Divide surds of the same order
Apply division rules to surds
Simplify quotients of surds
Q/A on division concepts
Discussions on surd division methods
Solving division problems systematically
Demonstrations of quotient simplification
Explaining division techniques
Calculators, division worksheets
Calculators, rationalization guides
KLB Mathematics Book Three Pg 81-82
5 2
Surds
Further Logarithms
Advanced rationalization techniques
Introduction
By the end of the lesson, the learner should be able to:
Rationalize complex expressions
Apply advanced rationalization methods
Handle multiple term denominators
Q/A on complex rationalization
Discussions on advanced techniques
Solving challenging rationalization problems
Demonstrations of sophisticated methods
Explaining complex denominator handling
Calculators, advanced technique sheets
Calculators, logarithm definition charts
KLB Mathematics Book Three Pg 85-87
5 3
Further Logarithms
Laws of logarithms
By the end of the lesson, the learner should be able to:
State the laws of logarithms
Apply basic logarithmic laws
Use logarithm laws for simple calculations
Q/A on logarithmic law foundations
Discussions on multiplication and division laws
Solving problems using basic laws
Demonstrations of law applications
Explaining law derivations
Calculators, logarithm law charts
KLB Mathematics Book Three Pg 90-93
5 4
Further Logarithms
Laws of logarithms
By the end of the lesson, the learner should be able to:
Use laws of logarithms to solve problems
Apply advanced logarithmic laws
Combine multiple laws in calculations
Q/A on law mastery and applications
Discussions on power and root laws
Solving complex law-based problems
Demonstrations of combined law usage
Explaining advanced law techniques
Calculators, advanced law worksheets
Calculators, challenging problem sets
KLB Mathematics Book Three Pg 90-93
5 5
Further Logarithms
Logarithmic equations and expressions
By the end of the lesson, the learner should be able to:
Solve the logarithmic equations and expressions
Apply algebraic methods to logarithmic equations
Verify solutions of logarithmic equations
Q/A on equation-solving techniques
Discussions on logarithmic equation types
Solving basic logarithmic equations
Demonstrations of solution methods
Explaining verification techniques
Calculators, equation-solving guides
Calculators, advanced equation worksheets
KLB Mathematics Book Three Pg 93-95
5 6
Further Logarithms
Further computation using logarithms
By the end of the lesson, the learner should be able to:
Solve problems involving logarithms
Apply logarithms to numerical computations
Use logarithms for complex calculations
Q/A on computational applications
Discussions on numerical problem-solving
Solving computation-based problems
Demonstrations of logarithmic calculations
Explaining computational advantages
Calculators, computation worksheets
KLB Mathematics Book Three Pg 95-96
5 7
Further Logarithms
Further computation using logarithms
By the end of the lesson, the learner should be able to:
Solve problems involving logarithms
Apply logarithms to intermediate calculations
Handle multi-step logarithmic computations
Q/A on intermediate computational skills
Discussions on multi-step processes
Solving intermediate computation problems
Demonstrations of systematic approaches
Explaining step-by-step methods
Calculators, intermediate problem sets
Calculators, advanced computation guides
KLB Mathematics Book Three Pg 95-96
6 1
Further Logarithms
Problem solving
By the end of the lesson, the learner should be able to:
Solve problems involving logarithms
Apply logarithms to computational applications
Integrate logarithmic concepts systematically
Q/A on integrated problem-solving
Discussions on application strategies
Solving comprehensive computational problems
Demonstrations of integrated approaches
Explaining systematic problem-solving
Calculators, comprehensive problem sets
KLB Mathematics Book Three Pg 97
6 2
Further Logarithms
Commercial Arithmetic
Problem solving
Simple interest
By the end of the lesson, the learner should be able to:
Solve problems involving logarithms
Apply logarithmic concepts to real-world situations
Handle practical logarithmic applications
Q/A on real-world applications
Discussions on practical problem contexts
Solving real-world logarithmic problems
Demonstrations of practical applications
Explaining everyday logarithm usage
Calculators, real-world application examples
Calculators, simple interest charts
KLB Mathematics Book Three Pg 97
6 3
Commercial Arithmetic
Simple interest
Compound interest
By the end of the lesson, the learner should be able to:
Calculate simple interest
Solve complex simple interest problems
Apply simple interest to real-world situations
Q/A on advanced simple interest concepts
Discussions on practical applications
Solving complex interest problems
Demonstrations of real-world scenarios
Explaining business applications
Calculators, real-world problem sets
Calculators, compound interest tables
KLB Mathematics Book Three Pg 98-101
6 4
Commercial Arithmetic
Compound interest
By the end of the lesson, the learner should be able to:
Calculate the compound interest
Solve advanced compound interest problems
Compare simple and compound interest
Q/A on advanced compounding scenarios
Discussions on investment comparisons
Solving complex compound problems
Demonstrations of comparison methods
Explaining investment decisions
Calculators, comparison worksheets
KLB Mathematics Book Three Pg 102-107
6 5
Commercial Arithmetic
Appreciation
Depreciation
By the end of the lesson, the learner should be able to:
Calculate the appreciation value of items
Apply appreciation concepts
Solve appreciation problems
Q/A on appreciation concepts
Discussions on asset value increases
Solving appreciation calculation problems
Demonstrations of value growth
Explaining appreciation applications
Calculators, appreciation examples
Calculators, depreciation charts
KLB Mathematics Book Three Pg 108
6 6
Commercial Arithmetic
Hire purchase
By the end of the lesson, the learner should be able to:
Find the hire purchase
Calculate hire purchase terms
Understand hire purchase concepts
Q/A on hire purchase principles
Discussions on installment buying
Solving basic hire purchase problems
Demonstrations of payment calculations
Explaining hire purchase benefits
Calculators, hire purchase examples
Calculators, complex hire purchase worksheets
KLB Mathematics Book Three Pg 110-112
6 7
Commercial Arithmetic
Income tax and P.A.Y.E
By the end of the lesson, the learner should be able to:
Calculate the income tax
Calculate the P.A.Y.E
Apply tax calculation methods
Q/A on tax system concepts
Discussions on income tax and P.A.Y.E systems
Solving tax calculation problems
Demonstrations of tax computation
Explaining taxation principles
Income tax tables, calculators
KLB Mathematics Book Three Pg 112-117
7 1
Circles: Chords and Tangents
Length of an arc
By the end of the lesson, the learner should be able to:
Calculate the length of an arc
Apply arc length formula
Understand arc-radius relationships
Q/A on circle properties and terminology
Discussions on arc measurement concepts
Solving basic arc length problems
Demonstrations of formula application
Explaining arc-angle relationships
Geometrical set, calculators
KLB Mathematics Book Three Pg 124-125
7 2
Circles: Chords and Tangents
Chords
Parallel chords
By the end of the lesson, the learner should be able to:
Calculate the length of a chord
Apply chord properties and theorems
Understand chord-radius relationships
Q/A on chord definition and properties
Discussions on chord calculation methods
Solving basic chord problems
Demonstrations of geometric constructions
Explaining chord theorems
Geometrical set, calculators
KLB Mathematics Book Three Pg 126-128
7 3
Circles: Chords and Tangents
Equal chords
By the end of the lesson, the learner should be able to:
Find the length of equal chords
Apply equal chord theorems
Solve equal chord problems
Q/A on equal chord properties
Discussions on chord equality conditions
Solving equal chord problems
Demonstrations of proof techniques
Explaining theoretical foundations
Geometrical set, calculators
KLB Mathematics Book Three Pg 131-132
7 4
Circles: Chords and Tangents
Intersecting chords
By the end of the lesson, the learner should be able to:
Calculate the length of intersecting chords
Apply intersecting chord theorem
Understand chord intersection properties
Q/A on chord intersection concepts
Discussions on intersection theorem
Solving basic intersection problems
Demonstrations of theorem application
Explaining geometric proofs
Geometrical set, calculators
KLB Mathematics Book Three Pg 132-135
7 5
Circles: Chords and Tangents
Chord properties
By the end of the lesson, the learner should be able to:
Solve comprehensive chord problems
Integrate all chord concepts
Apply chord knowledge systematically
Q/A on comprehensive chord understanding
Discussions on integrated problem-solving
Solving mixed chord problems
Demonstrations of systematic approaches
Explaining complete chord mastery
Geometrical set, calculators
KLB Mathematics Book Three Pg 126-139
7 6
Circles: Chords and Tangents
Tangent to a circle
By the end of the lesson, the learner should be able to:
Construct a tangent to a circle
Understand tangent properties
Apply tangent construction methods
Q/A on tangent definition and properties
Discussions on tangent construction
Solving basic tangent problems
Demonstrations of construction techniques
Explaining tangent characteristics
Geometrical set, calculators
KLB Mathematics Book Three Pg 139-140
7 7
Circles: Chords and Tangents
Properties of tangents to a circle from an external point
Tangent properties
By the end of the lesson, the learner should be able to:
State the properties of tangents to a circle from an external point
Apply external tangent properties
Solve external tangent problems
Q/A on external tangent concepts
Discussions on tangent properties
Solving external tangent problems
Demonstrations of property applications
Explaining theoretical foundations
Geometrical set, calculators
KLB Mathematics Book Three Pg 142-144
8 1
Circles: Chords and Tangents
Tangents to two circles
By the end of the lesson, the learner should be able to:
Calculate the tangents of direct common tangents
Find direct common tangent properties
Apply two-circle tangent concepts
Q/A on two-circle tangent concepts
Discussions on direct tangent properties
Solving direct tangent problems
Demonstrations of construction methods
Explaining geometric relationships
Geometrical set, calculators
KLB Mathematics Book Three Pg 148-149
8 2
Circles: Chords and Tangents
Tangents to two circles
Contact of circles
By the end of the lesson, the learner should be able to:
Calculate the tangents of transverse common tangents
Find transverse tangent properties
Compare direct and transverse tangents
Q/A on transverse tangent concepts
Discussions on tangent type differences
Solving transverse tangent problems
Demonstrations of comparison methods
Explaining tangent classifications
Geometrical set, calculators
KLB Mathematics Book Three Pg 150-151
8 3
Circles: Chords and Tangents
Contact of circles
Circle contact
By the end of the lesson, the learner should be able to:
Calculate the radii of contact circles
Understand external contact properties
Compare internal and external contact
Q/A on external contact concepts
Discussions on contact type differences
Solving external contact problems
Demonstrations of contact analysis
Explaining contact applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 153-154
8 4
Circles: Chords and Tangents
Angle in alternate segment
By the end of the lesson, the learner should be able to:
Calculate the angles in alternate segments
Apply alternate segment theorem
Understand segment angle properties
Q/A on alternate segment concepts
Discussions on segment angle relationships
Solving basic segment problems
Demonstrations of theorem application
Explaining geometric proofs
Geometrical set, calculators
KLB Mathematics Book Three Pg 157-160
8 5
Circles: Chords and Tangents
Angle in alternate segment
Circumscribed circle
By the end of the lesson, the learner should be able to:
Calculate the angles in alternate segments
Solve complex segment problems
Apply advanced segment theorems
Q/A on advanced segment applications
Discussions on complex angle relationships
Solving challenging segment problems
Demonstrations of sophisticated techniques
Explaining advanced applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 160-161
8 6
Circles: Chords and Tangents
Escribed circles
By the end of the lesson, the learner should be able to:
Construct escribed circles
Find escribed circle properties
Apply escription concepts
Q/A on escription concepts
Discussions on escribed circle construction
Solving escription problems
Demonstrations of construction methods
Explaining escription applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 165-166
8 7
Circles: Chords and Tangents
Centroid
Orthocenter
By the end of the lesson, the learner should be able to:
Construct centroid
Find centroid properties
Apply centroid concepts
Q/A on centroid definition and properties
Discussions on centroid construction
Solving centroid problems
Demonstrations of construction techniques
Explaining centroid applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 166
9

Midterm break

10 1
Circles: Chords and Tangents
Matrices
Matrices
Circle and triangle relationships
Introduction and real-life applications
Order of a matrix and elements
By the end of the lesson, the learner should be able to:
Solve comprehensive circle-triangle problems
Integrate all circle and triangle concepts
Apply advanced geometric relationships
Q/A on comprehensive geometric understanding
Discussions on integrated relationships
Solving complex geometric problems
Demonstrations of advanced applications
Explaining sophisticated geometric principles
Geometrical set, calculators
Old newspapers with league tables, chalk and blackboard, exercise books
Chalk and blackboard, ruled exercise books, class register
KLB Mathematics Book Three Pg 164-167
10 2
Matrices
Square matrices, row and column matrices
Addition of matrices
Subtraction of matrices
By the end of the lesson, the learner should be able to:
Classify matrices by their dimensions
Identify square, row, and column matrices
Understand zero and null matrices
Apply matrix equality conditions
Q/A on matrix classification using drawn examples
Discussions on special matrix types using patterns
Solving matrix identification using cutout papers
Demonstrations using classroom objects arrangement
Explaining matrix comparison using simple examples
Paper cutouts, chalk and blackboard, counters or bottle tops
Counters or stones, chalk and blackboard, exercise books
Chalk and blackboard, exercise books, number cards made from cardboard
KLB Mathematics Book Three Pg 169-170
10 3
Matrices
Combined addition and subtraction
Scalar multiplication
Introduction to matrix multiplication
By the end of the lesson, the learner should be able to:
Perform multiple matrix operations
Apply order of operations in matrix calculations
Solve complex combined problems
Demonstrate systematic problem-solving
Q/A on operation order using BODMAS rules
Discussions on complex expressions using step-by-step approach
Solving multi-step problems using organized methods
Demonstrations using systematic blackboard work
Explaining operation sequencing using flowcharts
Chalk and blackboard, exercise books, locally made operation cards
Beans or stones for grouping, chalk and blackboard, exercise books
Chalk and blackboard, rulers for tracing, exercise books
KLB Mathematics Book Three Pg 171-174
10 4
Matrices
Matrix multiplication (2×2 matrices)
Matrix multiplication (larger matrices)
By the end of the lesson, the learner should be able to:
Multiply 2×2 matrices systematically
Apply correct multiplication procedures
Calculate matrix products accurately
Understand result matrix dimensions
Q/A on 2×2 matrix multiplication using simple numbers
Discussions on systematic calculation methods
Solving 2×2 problems using step-by-step approach
Demonstrations using organized blackboard layout
Explaining product formation using grid method
Chalk and blackboard, exercise books, homemade grid templates
Chalk and blackboard, large sheets of paper for working, exercise books
KLB Mathematics Book Three Pg 176-179
10 5
Matrices
Properties of matrix multiplication
Real-world matrix multiplication applications
By the end of the lesson, the learner should be able to:
Understand non-commutativity of matrix multiplication
Apply associative and distributive properties
Distinguish between pre and post multiplication
Solve problems involving multiplication properties
Q/A on multiplication properties using counterexamples
Discussions on order importance using practical examples
Solving property-based problems using verification
Demonstrations using concrete examples
Explaining distributive law using expansion
Chalk and blackboard, exercise books, cardboard for property cards
Chalk and blackboard, local price lists, exercise books
KLB Mathematics Book Three Pg 174-179
10 6
Matrices
Identity matrix
By the end of the lesson, the learner should be able to:
Define and identify identity matrices
Understand identity matrix properties
Apply identity matrices in multiplication
Recognize the multiplicative identity role
Q/A on identity concepts using number 1 analogy
Discussions on multiplicative identity using examples
Solving identity problems using pattern recognition
Demonstrations using multiplication by 1 concept
Explaining diagonal properties using visual patterns
Chalk and blackboard, exercise books, pattern cards made from paper
KLB Mathematics Book Three Pg 182-183
10 7
Matrices
Determinant of 2×2 matrices
Inverse of 2×2 matrices - theory
By the end of the lesson, the learner should be able to:
Calculate determinants of 2×2 matrices
Apply the determinant formula correctly
Understand geometric interpretation of determinants
Use determinants to classify matrices
Q/A on determinant calculation using cross multiplication
Discussions on formula application using memory aids
Solving determinant problems using systematic approach
Demonstrations using cross pattern method
Explaining geometric meaning using area concepts
Chalk and blackboard, exercise books, crossed sticks for demonstration
Chalk and blackboard, exercise books, fraction examples
KLB Mathematics Book Three Pg 183
11 1
Matrices
Inverse of 2×2 matrices - practice
Introduction to solving simultaneous equations
By the end of the lesson, the learner should be able to:
Calculate inverses of 2×2 matrices systematically
Verify inverse calculations through multiplication
Apply inverse properties correctly
Solve complex inverse problems
Q/A on inverse calculation verification methods
Discussions on accuracy checking using multiplication
Solving advanced inverse problems using practice
Demonstrations using verification procedures
Explaining checking methods using examples
Chalk and blackboard, exercise books, scrap paper for verification
Chalk and blackboard, exercise books, equation examples from previous topics
KLB Mathematics Book Three Pg 185-187
11 2
Matrices
Solving 2×2 simultaneous equations using matrices
By the end of the lesson, the learner should be able to:
Solve 2×2 simultaneous equations using matrix methods
Apply inverse matrix techniques
Verify solutions by substitution
Compare matrix method with other techniques
Q/A on matrix solution methods using step-by-step approach
Discussions on solution verification using substitution
Solving 2×2 systems using complete method
Demonstrations using organized solution process
Explaining method advantages using comparisons
Chalk and blackboard, exercise books, previous elimination method examples
KLB Mathematics Book Three Pg 188-190
11 3
Matrices
Advanced simultaneous equation problems
Matrix applications in real-world problems
By the end of the lesson, the learner should be able to:
Solve complex simultaneous equation systems
Handle systems with no solution or infinite solutions
Interpret determinant values in solution context
Apply matrix methods to word problems
Q/A on complex systems using special cases
Discussions on solution types using geometric interpretation
Solving challenging problems using complete analysis
Demonstrations using classification methods
Explaining geometric meaning using line concepts
Chalk and blackboard, exercise books, graph paper if available
Chalk and blackboard, local business examples, exercise books
KLB Mathematics Book Three Pg 188-190
11 4
Matrices
Transpose of matrices
By the end of the lesson, the learner should be able to:
Define and calculate matrix transpose
Understand transpose properties
Apply transpose operations correctly
Solve problems involving transpose
Q/A on transpose concepts using reflection ideas
Discussions on row-column interchange using visual methods
Solving transpose problems using systematic approach
Demonstrations using flip and rotate concepts
Explaining properties using symmetry ideas
Chalk and blackboard, exercise books, paper cutouts for demonstration
KLB Mathematics Book Three Pg 170-174
11 5
Matrices
Formulae and Variations
Matrix equation solving
Introduction to formulae
By the end of the lesson, the learner should be able to:
Solve matrix equations systematically
Find unknown matrices in equations
Apply inverse operations to solve equations
Verify matrix equation solutions
Q/A on equation solving using algebraic analogy
Discussions on unknown determination using systematic methods
Solving matrix equations using step-by-step approach
Demonstrations using organized solution procedures
Explaining verification using checking methods
Chalk and blackboard, exercise books, algebra reference examples
Chalk and blackboard, measuring tape or string, exercise books
KLB Mathematics Book Three Pg 183-190
11 6
Formulae and Variations
Subject of a formula - basic cases
Subject of a formula - intermediate cases
By the end of the lesson, the learner should be able to:
Make simple variables the subject of formulae
Apply inverse operations to rearrange formulae
Understand the concept of subject change
Solve basic subject transformation problems
Q/A on inverse operations using number examples
Discussions on formula rearrangement using balance method
Solving basic subject change problems using step-by-step approach
Demonstrations using see-saw balance analogy
Explaining inverse operations using practical examples
Chalk and blackboard, simple balance (stones and stick), exercise books
Chalk and blackboard, fraction strips made from paper, exercise books
KLB Mathematics Book Three Pg 191-193
11 7
Formulae and Variations
Subject of a formula - advanced cases
By the end of the lesson, the learner should be able to:
Make variables subject in complex formulae
Handle square roots and quadratic expressions
Apply advanced algebraic manipulation
Solve challenging subject transformation problems
Q/A on advanced manipulation using careful steps
Discussions on square root handling using examples
Solving complex problems using systematic approach
Demonstrations using detailed blackboard work
Explaining quadratic handling using factoring
Chalk and blackboard, squared paper patterns, exercise books
KLB Mathematics Book Three Pg 191-193
12 1
Formulae and Variations
Applications of formula manipulation
Introduction to variation
By the end of the lesson, the learner should be able to:
Apply formula rearrangement to practical problems
Solve real-world problems using formula manipulation
Calculate unknown quantities in various contexts
Interpret results in meaningful situations
Q/A on practical applications using local examples
Discussions on real-world formula use in farming/building
Solving application problems using formula rearrangement
Demonstrations using construction and farming scenarios
Explaining practical interpretation using community examples
Chalk and blackboard, local measurement tools, exercise books
Chalk and blackboard, local price lists from markets, exercise books
KLB Mathematics Book Three Pg 191-193
12 2
Formulae and Variations
Sequences and Series
Direct variation - introduction
Introduction to sequences and finding terms
By the end of the lesson, the learner should be able to:
Understand direct proportionality concepts
Recognize direct variation patterns
Use direct variation notation correctly
Calculate constants of proportionality
Q/A on direct relationships using simple examples
Discussions on proportional changes using market scenarios
Solving basic direct variation problems
Demonstrations using doubling and tripling examples
Explaining proportionality using ratio concepts
Chalk and blackboard, beans or stones for counting, exercise books
Chalk and blackboard, stones or beans for patterns, exercise books
KLB Mathematics Book Three Pg 194-196
12 3
Sequences and Series
General term of sequences and applications
By the end of the lesson, the learner should be able to:
Develop general rules for sequences
Express the nth term using algebraic notation
Find specific terms using general formulas
Apply sequence concepts to practical problems
Q/A on rule formulation using systematic approach
Discussions on algebraic expression development
Solving general term and application problems
Demonstrations using position-value relationships
Explaining practical relevance using community examples
Chalk and blackboard, numbered cards made from paper, exercise books
KLB Mathematics Book Three Pg 207-208
12 4
Sequences and Series
Arithmetic sequences and nth term
Arithmetic sequence applications
By the end of the lesson, the learner should be able to:
Define arithmetic sequences and common differences
Calculate common differences correctly
Derive and apply the nth term formula
Solve problems using arithmetic sequence concepts
Q/A on arithmetic patterns using step-by-step examples
Discussions on constant difference patterns and formula derivation
Solving arithmetic sequence problems systematically
Demonstrations using equal-step progressions
Explaining formula structure using algebraic reasoning
Chalk and blackboard, measuring tape or string, exercise books
Chalk and blackboard, local employment/savings examples, exercise books
KLB Mathematics Book Three Pg 209-210
12 5
Sequences and Series
Geometric sequences and nth term
By the end of the lesson, the learner should be able to:
Define geometric sequences and common ratios
Calculate common ratios correctly
Derive and apply the geometric nth term formula
Understand exponential growth patterns
Q/A on geometric patterns using multiplication examples
Discussions on ratio-based progressions and formula derivation
Solving geometric sequence problems systematically
Demonstrations using doubling and scaling examples
Explaining exponential structure using practical examples
Chalk and blackboard, objects for doubling demonstrations, exercise books
KLB Mathematics Book Three Pg 211-213
12 6
Sequences and Series
Geometric sequence applications
Arithmetic series and sum formula
By the end of the lesson, the learner should be able to:
Solve complex geometric sequence problems
Apply geometric sequences to real-world problems
Handle population growth and depreciation problems
Model exponential patterns using sequences
Q/A on practical applications using population/growth examples
Discussions on exponential growth in nature and economics
Solving real-world problems using geometric methods
Demonstrations using population and business scenarios
Explaining practical interpretation using meaningful contexts
Chalk and blackboard, population/growth data examples, exercise books
Chalk and blackboard, counting materials for summation, exercise books
KLB Mathematics Book Three Pg 211-213
12 7
Sequences and Series
Geometric series and applications
Mixed problems and advanced applications
By the end of the lesson, the learner should be able to:
Define geometric series and understand convergence
Derive and apply geometric series formulas
Handle finite and infinite geometric series
Apply geometric series to practical situations
Q/A on geometric series concepts using multiplication examples
Discussions on convergence and formula applications
Solving geometric series problems including infinite cases
Demonstrations using geometric sum patterns
Explaining convergence using practical examples
Chalk and blackboard, convergence demonstration materials, exercise books
Chalk and blackboard, mixed problem collections, exercise books
KLB Mathematics Book Three Pg 216-219
13 1
Sequences and Series
Sequences in nature and technology
By the end of the lesson, the learner should be able to:
Identify mathematical patterns in natural phenomena
Analyze sequences in biological and technological contexts
Apply sequence concepts to environmental problems
Appreciate mathematics in the natural and modern world
Q/A on natural and technological patterns using examples
Discussions on biological sequences and digital applications
Solving nature and technology-based problems
Demonstrations using natural pattern examples
Explaining mathematical beauty using real phenomena
Chalk and blackboard, natural and technology examples, exercise books
KLB Mathematics Book Three Pg 207-219
13-14

End term exams and closing


Your Name Comes Here


Download

Feedback