Home






SCHEME OF WORK
Mathematics
Form 3 2025
TERM II
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1

Opening,opener exams

2 1
Approximations and Errors
Computing using calculators
By the end of the lesson, the learner should be able to:
Solve basic operations using calculators
Use calculator functions effectively
Apply calculator to mathematical computations
Q/A on calculator familiarity
Discussions on calculator operations
Solving basic arithmetic problems
Demonstrations of calculator functions
Explaining proper calculator usage
Calculators, operation guides
Calculators, verification worksheets
KLB Mathematics Book Three Pg 24-26
2 2
Approximations and Errors
Approximation
By the end of the lesson, the learner should be able to:
Approximate values by rounding off
Round numbers to specified decimal places
Apply rounding rules correctly
Q/A on rounding concepts
Discussions on rounding techniques
Solving rounding problems
Demonstrations of rounding methods
Explaining rounding rules and applications
Calculators, rounding charts
KLB Mathematics Book Three Pg 29-30
2 3
Approximations and Errors
Estimation
By the end of the lesson, the learner should be able to:
Approximate values by truncation
Estimate values using appropriate methods
Compare estimation techniques
Q/A on estimation strategies
Discussions on truncation vs rounding
Solving estimation problems
Demonstrations of truncation methods
Explaining when to use different techniques
Calculators, estimation guides
KLB Mathematics Book Three Pg 30
2 4
Approximations and Errors
Accuracy and errors
Percentage error
By the end of the lesson, the learner should be able to:
Find the absolute error
Calculate relative error
Distinguish between different error types
Q/A on error concepts
Discussions on error calculations
Solving absolute and relative error problems
Demonstrations of error computation
Explaining error significance
Calculators, error calculation sheets
Calculators, percentage error worksheets
KLB Mathematics Book Three Pg 31-32
2 5
Approximations and Errors
Rounding off error and truncation error
By the end of the lesson, the learner should be able to:
Find the rounding off error
Calculate truncation error
Compare rounding and truncation errors
Q/A on error types
Discussions on error sources
Solving rounding and truncation error problems
Demonstrations of error comparison
Explaining error analysis
Calculators, error comparison charts
KLB Mathematics Book Three Pg 34
2 6
Approximations and Errors
Propagation of errors
By the end of the lesson, the learner should be able to:
Find the propagation of errors in addition and subtraction
Calculate combined errors
Apply error propagation rules
Q/A on error propagation concepts
Discussions on addition/subtraction errors
Solving error propagation problems
Demonstrations of error combination
Explaining propagation principles
Calculators, error propagation guides
KLB Mathematics Book Three Pg 35-36
2 7
Approximations and Errors
Propagation of errors
Propagation of errors in multiplication
By the end of the lesson, the learner should be able to:
Find the propagation of errors in addition and subtraction
Apply error propagation to complex problems
Verify error calculations
Q/A on propagation mastery
Discussions on complex error scenarios
Solving advanced propagation problems
Demonstrations of verification methods
Explaining error validation
Calculators, verification worksheets
Calculators, multiplication error guides
KLB Mathematics Book Three Pg 35-36
3 1
Approximations and Errors
Propagation of errors in multiplication
By the end of the lesson, the learner should be able to:
Find the propagation of errors in multiplication
Solve complex multiplication error problems
Compare different error propagation methods
Q/A on advanced multiplication errors
Discussions on complex error scenarios
Solving challenging multiplication problems
Demonstrations of method comparison
Explaining optimal error calculation
Calculators, method comparison charts
KLB Mathematics Book Three Pg 36-37
3 2
Approximations and Errors
Propagation of errors in division
By the end of the lesson, the learner should be able to:
Find the propagation of errors in division
Calculate errors in quotients
Apply division error rules
Q/A on division error concepts
Discussions on quotient error calculation
Solving division error problems
Demonstrations of division error methods
Explaining division error principles
Calculators, division error worksheets
Calculators, verification guides
KLB Mathematics Book Three Pg 37-38
3 3
Approximations and Errors
Word problems
By the end of the lesson, the learner should be able to:
Find the propagation of errors of a word problem
Apply error analysis to real-world situations
Solve comprehensive error problems
Q/A on chapter consolidation
Discussions on real-world applications
Solving comprehensive word problems
Demonstrations of problem-solving strategies
Explaining practical error analysis
Calculators, word problem sets, comprehensive review sheets
KLB Mathematics Book Three Pg 39-40
3 4
Trigonometry (II)
The unit circle
By the end of the lesson, the learner should be able to:
Draw the unit circle
Identify coordinates on the unit circle
Understand the unit circle concept
Q/A on basic circle properties
Discussions on unit circle construction
Solving problems using unit circle
Demonstrations of circle drawing
Explaining unit circle applications
Calculators, protractors, rulers, pair of compasses
KLB Mathematics Book Three Pg 41-42
3 5
Trigonometry (II)
The unit circle
Trigonometric ratios of angles greater than 90°
By the end of the lesson, the learner should be able to:
Solve problems using the unit circle
Apply unit circle to find trigonometric values
Use unit circle for angle measurement
Q/A on unit circle mastery
Discussions on practical applications
Solving trigonometric problems
Demonstrations of value finding
Explaining angle relationships
Calculators, protractors, rulers, pair of compasses
KLB Mathematics Book Three Pg 43-44
3 6
Trigonometry (II)
Trigonometric ratios of angles greater than 90°
By the end of the lesson, the learner should be able to:
Find the trigonometric values of angles
Solve problems with angles in different quadrants
Apply ASTC rule for sign determination
Q/A on quadrant properties
Discussions on sign conventions
Solving multi-quadrant problems
Demonstrations of ASTC rule
Explaining trigonometric signs
Calculators, quadrant charts
KLB Mathematics Book Three Pg 46-47
3 7
Trigonometry (II)
Trigonometric ratios of negative angles
By the end of the lesson, the learner should be able to:
Find the trigonometric values of negative angles
Apply negative angle identities
Solve problems involving negative angles
Q/A on negative angle concepts
Discussions on angle direction
Solving negative angle problems
Demonstrations of identity applications
Explaining clockwise rotations
Geoboards, graph books, calculators
KLB Mathematics Book Three Pg 48-49
4 1
Trigonometry (II)
Trigonometric ratios of angles greater than 360°
Use of mathematical tables
By the end of the lesson, the learner should be able to:
Find the trigonometric values of angles greater than 360°
Apply coterminal angle concepts
Reduce angles to standard position
Q/A on angle reduction concepts
Discussions on coterminal angles
Solving extended angle problems
Demonstrations of angle reduction
Explaining periodic properties
Geoboards, graph books, calculators
Mathematical tables, calculators
KLB Mathematics Book Three Pg 49-51
4 2
Trigonometry (II)
Use of mathematical tables
By the end of the lesson, the learner should be able to:
Use mathematical tables to find tan
Apply tables for all trigonometric functions
Compare table and calculator results
Q/A on tangent table usage
Discussions on function relationships
Solving comprehensive table problems
Demonstrations of result verification
Explaining table limitations
Mathematical tables, calculators
KLB Mathematics Book Three Pg 55-56
4 3
Trigonometry (II)
Use of calculators
Radian measure
By the end of the lesson, the learner should be able to:
Use calculators to find sine, cosine and tan
Apply calculator functions for trigonometry
Verify calculator accuracy
Q/A on calculator trigonometric functions
Discussions on calculator modes
Solving problems using calculators
Demonstrations of function keys
Explaining degree vs radian modes
Calculators, function guides
Calculators, conversion charts
KLB Mathematics Book Three Pg 56-58
4 4
Trigonometry (II)
Simple trigonometric graphs
By the end of the lesson, the learner should be able to:
Draw tables for sine of values
Plot graphs of sine functions
Identify sine graph properties
Q/A on coordinate graphing
Discussions on periodic functions
Solving graphing problems
Demonstrations of sine plotting
Explaining graph characteristics
Calculators, graph papers, plotting guides
KLB Mathematics Book Three Pg 62-63
4 5
Trigonometry (II)
Graphs of cosines
By the end of the lesson, the learner should be able to:
Draw tables for cosine of values
Plot graphs of cosine functions
Compare sine and cosine graphs
Q/A on cosine properties
Discussions on graph relationships
Solving cosine graphing problems
Demonstrations of cosine plotting
Explaining phase relationships
Calculators, graph papers, plotting guides
KLB Mathematics Book Three Pg 63-64
4 6
Trigonometry (II)
Graphs of tan
The sine rule
By the end of the lesson, the learner should be able to:
Draw tables for tan of values
Plot graphs of tan functions
Identify asymptotes and discontinuities
Q/A on tangent behavior
Discussions on function domains
Solving tangent graphing problems
Demonstrations of asymptote identification
Explaining discontinuous functions
Calculators, graph papers, plotting guides
Calculators, triangle worksheets
KLB Mathematics Book Three Pg 64-65
4 7
Trigonometry (II)
Cosine rule
By the end of the lesson, the learner should be able to:
State the cosine rule
Apply cosine rule to find solution of triangles
Choose appropriate rule for triangle solving
Q/A on cosine rule concepts
Discussions on rule selection
Solving complex triangle problems
Demonstrations of cosine rule
Explaining when to use each rule
Calculators, triangle worksheets
KLB Mathematics Book Three Pg 71-75
5 1
Trigonometry (II)
Surds
Problem solving
Rational and irrational numbers
By the end of the lesson, the learner should be able to:
Solve problems on cosines, sines and tan
Apply trigonometry to real-world situations
Integrate all trigonometric concepts
Q/A on chapter consolidation
Discussions on practical applications
Solving comprehensive problems
Demonstrations of problem-solving strategies
Explaining real-world trigonometry
Calculators, comprehensive problem sets, real-world examples
Calculators, number classification charts
KLB Mathematics Book Three Pg 76-77
5 2
Surds
Order of surds and simplification
By the end of the lesson, the learner should be able to:
State the order of surds
Identify surd orders correctly
Simplify surds to lowest terms
Q/A on surd definition and properties
Discussions on surd order concepts
Solving order identification problems
Demonstrations of surd simplification
Explaining simplification techniques
Calculators, surd order examples
KLB Mathematics Book Three Pg 78-79
5 3
Surds
Simplification of surds practice
By the end of the lesson, the learner should be able to:
Simplify surds using factorization
Express surds in simplest form
Apply systematic simplification methods
Q/A on factorization techniques
Discussions on factor identification
Solving extensive simplification problems
Demonstrations of step-by-step methods
Explaining perfect square extraction
Calculators, factor trees, simplification worksheets
KLB Mathematics Book Three Pg 79-80
5 4
Surds
Addition of surds
Subtraction of surds
By the end of the lesson, the learner should be able to:
Add surds with like terms
Combine surds of the same order
Simplify surd addition expressions
Q/A on like term concepts
Discussions on surd addition rules
Solving addition problems systematically
Demonstrations of combining techniques
Explaining when surds can be added
Calculators, addition rule charts
Calculators, subtraction worksheets
KLB Mathematics Book Three Pg 79-80
5 5
Surds
Multiplication of surds
By the end of the lesson, the learner should be able to:
Multiply surds of the same order
Apply multiplication rules to surds
Simplify products of surds
Q/A on multiplication concepts
Discussions on surd multiplication laws
Solving multiplication problems
Demonstrations of product simplification
Explaining multiplication principles
Calculators, multiplication rule guides
KLB Mathematics Book Three Pg 80-82
5 6
Surds
Division of surds
By the end of the lesson, the learner should be able to:
Divide surds of the same order
Apply division rules to surds
Simplify quotients of surds
Q/A on division concepts
Discussions on surd division methods
Solving division problems systematically
Demonstrations of quotient simplification
Explaining division techniques
Calculators, division worksheets
KLB Mathematics Book Three Pg 81-82
5 7
Surds
Rationalizing the denominator
Advanced rationalization techniques
By the end of the lesson, the learner should be able to:
Rationalize the denominator of fractions
Apply rationalization techniques
Simplify expressions with surd denominators
Q/A on rationalization concepts
Discussions on denominator clearing
Solving rationalization problems
Demonstrations of conjugate methods
Explaining rationalization importance
Calculators, rationalization guides
Calculators, advanced technique sheets
KLB Mathematics Book Three Pg 85-87
6 1
Commercial Arithmetic
Simple interest
By the end of the lesson, the learner should be able to:
Calculate simple interest
Apply simple interest formula
Solve basic interest problems
Q/A on interest concepts and terminology
Discussions on principal, rate, and time
Solving basic simple interest problems
Demonstrations of formula application
Explaining interest calculations
Calculators, simple interest charts
KLB Mathematics Book Three Pg 98-99
6 2
Commercial Arithmetic
Simple interest
Compound interest
By the end of the lesson, the learner should be able to:
Calculate simple interest
Solve complex simple interest problems
Apply simple interest to real-world situations
Q/A on advanced simple interest concepts
Discussions on practical applications
Solving complex interest problems
Demonstrations of real-world scenarios
Explaining business applications
Calculators, real-world problem sets
Calculators, compound interest tables
KLB Mathematics Book Three Pg 98-101
6 3
Commercial Arithmetic
Compound interest
By the end of the lesson, the learner should be able to:
Calculate the compound interest
Solve advanced compound interest problems
Compare simple and compound interest
Q/A on advanced compounding scenarios
Discussions on investment comparisons
Solving complex compound problems
Demonstrations of comparison methods
Explaining investment decisions
Calculators, comparison worksheets
KLB Mathematics Book Three Pg 102-107
6 4
Commercial Arithmetic
Appreciation
By the end of the lesson, the learner should be able to:
Calculate the appreciation value of items
Apply appreciation concepts
Solve appreciation problems
Q/A on appreciation concepts
Discussions on asset value increases
Solving appreciation calculation problems
Demonstrations of value growth
Explaining appreciation applications
Calculators, appreciation examples
KLB Mathematics Book Three Pg 108
6 5
Commercial Arithmetic
Depreciation
Hire purchase
By the end of the lesson, the learner should be able to:
Calculate the depreciation value of items
Apply depreciation methods
Solve depreciation problems
Q/A on depreciation concepts and methods
Discussions on asset value decreases
Solving depreciation calculation problems
Demonstrations of depreciation methods
Explaining business depreciation
Calculators, depreciation charts
Calculators, hire purchase examples
KLB Mathematics Book Three Pg 109
6 6
Commercial Arithmetic
Hire purchase
By the end of the lesson, the learner should be able to:
Find the hire purchase
Solve complex hire purchase problems
Calculate total costs and interest charges
Q/A on advanced hire purchase scenarios
Discussions on complex payment structures
Solving challenging hire purchase problems
Demonstrations of cost analysis
Explaining consumer finance decisions
Calculators, complex hire purchase worksheets
KLB Mathematics Book Three Pg 110-112
6 7
Commercial Arithmetic
Income tax and P.A.Y.E
By the end of the lesson, the learner should be able to:
Calculate the income tax
Calculate the P.A.Y.E
Apply tax calculation methods
Q/A on tax system concepts
Discussions on income tax and P.A.Y.E systems
Solving tax calculation problems
Demonstrations of tax computation
Explaining taxation principles
Income tax tables, calculators
KLB Mathematics Book Three Pg 112-117
7 1
Circles: Chords and Tangents
Length of an arc
By the end of the lesson, the learner should be able to:
Calculate the length of an arc
Apply arc length formula
Understand arc-radius relationships
Q/A on circle properties and terminology
Discussions on arc measurement concepts
Solving basic arc length problems
Demonstrations of formula application
Explaining arc-angle relationships
Geometrical set, calculators
KLB Mathematics Book Three Pg 124-125
7 2
Circles: Chords and Tangents
Chords
By the end of the lesson, the learner should be able to:
Calculate the length of a chord
Apply chord properties and theorems
Understand chord-radius relationships
Q/A on chord definition and properties
Discussions on chord calculation methods
Solving basic chord problems
Demonstrations of geometric constructions
Explaining chord theorems
Geometrical set, calculators
KLB Mathematics Book Three Pg 126-128
7 3
Circles: Chords and Tangents
Parallel chords
Equal chords
By the end of the lesson, the learner should be able to:
Calculate the perpendicular bisector
Find the value of parallel chords
Apply parallel chord properties
Q/A on parallel chord concepts
Discussions on perpendicular bisector properties
Solving parallel chord problems
Demonstrations of construction techniques
Explaining geometric relationships
Geometrical set, calculators
KLB Mathematics Book Three Pg 129-131
7 4
Circles: Chords and Tangents
Intersecting chords
By the end of the lesson, the learner should be able to:
Calculate the length of intersecting chords
Apply intersecting chord theorem
Understand chord intersection properties
Q/A on chord intersection concepts
Discussions on intersection theorem
Solving basic intersection problems
Demonstrations of theorem application
Explaining geometric proofs
Geometrical set, calculators
KLB Mathematics Book Three Pg 132-135
7 5
Circles: Chords and Tangents
Intersecting chords
By the end of the lesson, the learner should be able to:
Calculate the length of intersecting chords
Solve complex intersection problems
Apply advanced chord theorems
Q/A on advanced intersection scenarios
Discussions on complex chord relationships
Solving challenging intersection problems
Demonstrations of advanced techniques
Explaining sophisticated applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 135-139
7 6
Circles: Chords and Tangents
Chord properties
Tangent to a circle
By the end of the lesson, the learner should be able to:
Solve comprehensive chord problems
Integrate all chord concepts
Apply chord knowledge systematically
Q/A on comprehensive chord understanding
Discussions on integrated problem-solving
Solving mixed chord problems
Demonstrations of systematic approaches
Explaining complete chord mastery
Geometrical set, calculators
KLB Mathematics Book Three Pg 126-139
7 7
Circles: Chords and Tangents
Tangent to a circle
By the end of the lesson, the learner should be able to:
Calculate the length of tangent
Calculate the angle between tangents
Apply tangent measurement techniques
Q/A on tangent calculations
Discussions on tangent measurement
Solving tangent calculation problems
Demonstrations of measurement methods
Explaining tangent applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 141-142
8 1
Circles: Chords and Tangents
Properties of tangents to a circle from an external point
By the end of the lesson, the learner should be able to:
State the properties of tangents to a circle from an external point
Apply external tangent properties
Solve external tangent problems
Q/A on external tangent concepts
Discussions on tangent properties
Solving external tangent problems
Demonstrations of property applications
Explaining theoretical foundations
Geometrical set, calculators
KLB Mathematics Book Three Pg 142-144
8 2
Circles: Chords and Tangents
Tangent properties
Tangents to two circles
By the end of the lesson, the learner should be able to:
Solve comprehensive tangent problems
Apply all tangent concepts
Integrate tangent knowledge systematically
Q/A on comprehensive tangent mastery
Discussions on integrated applications
Solving mixed tangent problems
Demonstrations of complete understanding
Explaining systematic problem-solving
Geometrical set, calculators
KLB Mathematics Book Three Pg 139-147
8 3
Circles: Chords and Tangents
Tangents to two circles
By the end of the lesson, the learner should be able to:
Calculate the tangents of transverse common tangents
Find transverse tangent properties
Compare direct and transverse tangents
Q/A on transverse tangent concepts
Discussions on tangent type differences
Solving transverse tangent problems
Demonstrations of comparison methods
Explaining tangent classifications
Geometrical set, calculators
KLB Mathematics Book Three Pg 150-151
8 4
Circles: Chords and Tangents
Contact of circles
By the end of the lesson, the learner should be able to:
Calculate the radii of contact circles
Understand internal contact properties
Apply contact circle concepts
Q/A on circle contact concepts
Discussions on internal contact properties
Solving internal contact problems
Demonstrations of contact relationships
Explaining geometric principles
Geometrical set, calculators
KLB Mathematics Book Three Pg 151-153
8 5
Circles: Chords and Tangents
Circle contact
By the end of the lesson, the learner should be able to:
Solve problems involving chords, tangents and contact circles
Integrate all contact concepts
Apply comprehensive contact knowledge
Q/A on comprehensive contact understanding
Discussions on integrated problem-solving
Solving complex contact problems
Demonstrations of systematic approaches
Explaining complete contact mastery
Geometrical set, calculators
KLB Mathematics Book Three Pg 154-157
8 6
Circles: Chords and Tangents
Angle in alternate segment
By the end of the lesson, the learner should be able to:
Calculate the angles in alternate segments
Apply alternate segment theorem
Understand segment angle properties
Q/A on alternate segment concepts
Discussions on segment angle relationships
Solving basic segment problems
Demonstrations of theorem application
Explaining geometric proofs
Geometrical set, calculators
KLB Mathematics Book Three Pg 157-160
8 7
Circles: Chords and Tangents
Angle in alternate segment
Circumscribed circle
By the end of the lesson, the learner should be able to:
Calculate the angles in alternate segments
Solve complex segment problems
Apply advanced segment theorems
Q/A on advanced segment applications
Discussions on complex angle relationships
Solving challenging segment problems
Demonstrations of sophisticated techniques
Explaining advanced applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 160-161
9

Mid term exams and mid term break

10 1
Circles: Chords and Tangents
Escribed circles
By the end of the lesson, the learner should be able to:
Construct escribed circles
Find escribed circle properties
Apply escription concepts
Q/A on escription concepts
Discussions on escribed circle construction
Solving escription problems
Demonstrations of construction methods
Explaining escription applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 165-166
10 2
Circles: Chords and Tangents
Centroid
By the end of the lesson, the learner should be able to:
Construct centroid
Find centroid properties
Apply centroid concepts
Q/A on centroid definition and properties
Discussions on centroid construction
Solving centroid problems
Demonstrations of construction techniques
Explaining centroid applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 166
10 3
Circles: Chords and Tangents
Orthocenter
Circle and triangle relationships
By the end of the lesson, the learner should be able to:
Construct orthocenter
Find orthocenter properties
Apply orthocenter concepts
Q/A on orthocenter concepts
Discussions on orthocenter construction
Solving orthocenter problems
Demonstrations of construction methods
Explaining orthocenter applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 167
10 4
Matrices
Introduction and real-life applications
Order of a matrix and elements
Square matrices, row and column matrices
By the end of the lesson, the learner should be able to:
Define matrices and identify matrix applications
Recognize matrices in everyday contexts
Understand tabular data representation
Appreciate the importance of matrices
Q/A on tabular data in daily life
Discussions on school exam results tables
Analyzing bus timetables and price lists
Demonstrations using newspaper sports tables
Explaining matrix notation using grid patterns
Old newspapers with league tables, chalk and blackboard, exercise books
Chalk and blackboard, ruled exercise books, class register
Paper cutouts, chalk and blackboard, counters or bottle tops
KLB Mathematics Book Three Pg 168-169
10 5
Matrices
Addition of matrices
Subtraction of matrices
Combined addition and subtraction
By the end of the lesson, the learner should be able to:
Add matrices of the same order
Apply matrix addition rules correctly
Understand compatibility for addition
Solve matrix addition problems systematically
Q/A on matrix addition using number examples
Discussions on element-wise addition using counters
Solving basic addition using blackboard work
Demonstrations using physical counting objects
Explaining compatibility using size comparisons
Counters or stones, chalk and blackboard, exercise books
Chalk and blackboard, exercise books, number cards made from cardboard
Chalk and blackboard, exercise books, locally made operation cards
KLB Mathematics Book Three Pg 170-171
10 6
Matrices
Scalar multiplication
Introduction to matrix multiplication
Matrix multiplication (2×2 matrices)
By the end of the lesson, the learner should be able to:
Multiply matrices by scalar quantities
Apply scalar multiplication rules
Understand the effect of scalar multiplication
Solve scalar multiplication problems
Q/A on scalar multiplication using times tables
Discussions on scaling using multiplication concepts
Solving scalar problems using repeated addition
Demonstrations using groups of objects
Explaining scalar effects using enlargement concepts
Beans or stones for grouping, chalk and blackboard, exercise books
Chalk and blackboard, rulers for tracing, exercise books
Chalk and blackboard, exercise books, homemade grid templates
KLB Mathematics Book Three Pg 174-175
10 7
Matrices
Matrix multiplication (larger matrices)
By the end of the lesson, the learner should be able to:
Multiply matrices of various orders
Apply multiplication to 3×3 and larger matrices
Determine when multiplication is possible
Calculate products efficiently
Q/A on larger matrix multiplication using patterns
Discussions on efficiency techniques using shortcuts
Solving advanced problems using systematic methods
Demonstrations using organized calculation procedures
Explaining general principles using examples
Chalk and blackboard, large sheets of paper for working, exercise books
KLB Mathematics Book Three Pg 176-179
11 1
Matrices
Properties of matrix multiplication
By the end of the lesson, the learner should be able to:
Understand non-commutativity of matrix multiplication
Apply associative and distributive properties
Distinguish between pre and post multiplication
Solve problems involving multiplication properties
Q/A on multiplication properties using counterexamples
Discussions on order importance using practical examples
Solving property-based problems using verification
Demonstrations using concrete examples
Explaining distributive law using expansion
Chalk and blackboard, exercise books, cardboard for property cards
KLB Mathematics Book Three Pg 174-179
11 2
Matrices
Real-world matrix multiplication applications
Identity matrix
By the end of the lesson, the learner should be able to:
Apply matrix multiplication to practical problems
Solve business and economic applications
Calculate costs, revenues, and quantities
Interpret matrix multiplication results
Q/A on practical applications using local business examples
Discussions on market problems using familiar contexts
Solving real-world problems using matrix methods
Demonstrations using shop keeper scenarios
Explaining result interpretation using meaningful contexts
Chalk and blackboard, local price lists, exercise books
Chalk and blackboard, exercise books, pattern cards made from paper
KLB Mathematics Book Three Pg 176-179
11 3
Matrices
Determinant of 2×2 matrices
By the end of the lesson, the learner should be able to:
Calculate determinants of 2×2 matrices
Apply the determinant formula correctly
Understand geometric interpretation of determinants
Use determinants to classify matrices
Q/A on determinant calculation using cross multiplication
Discussions on formula application using memory aids
Solving determinant problems using systematic approach
Demonstrations using cross pattern method
Explaining geometric meaning using area concepts
Chalk and blackboard, exercise books, crossed sticks for demonstration
KLB Mathematics Book Three Pg 183
11 4
Matrices
Inverse of 2×2 matrices - theory
By the end of the lesson, the learner should be able to:
Understand the concept of matrix inverse
Identify conditions for matrix invertibility
Apply the inverse formula for 2×2 matrices
Understand singular matrices
Q/A on inverse concepts using reciprocal analogy
Discussions on invertibility using determinant conditions
Solving basic inverse problems using formula
Demonstrations using step-by-step method
Explaining singular matrices using zero determinant
Chalk and blackboard, exercise books, fraction examples
KLB Mathematics Book Three Pg 183-185
11 5
Matrices
Inverse of 2×2 matrices - practice
Introduction to solving simultaneous equations
By the end of the lesson, the learner should be able to:
Calculate inverses of 2×2 matrices systematically
Verify inverse calculations through multiplication
Apply inverse properties correctly
Solve complex inverse problems
Q/A on inverse calculation verification methods
Discussions on accuracy checking using multiplication
Solving advanced inverse problems using practice
Demonstrations using verification procedures
Explaining checking methods using examples
Chalk and blackboard, exercise books, scrap paper for verification
Chalk and blackboard, exercise books, equation examples from previous topics
KLB Mathematics Book Three Pg 185-187
11 6
Matrices
Solving 2×2 simultaneous equations using matrices
By the end of the lesson, the learner should be able to:
Solve 2×2 simultaneous equations using matrix methods
Apply inverse matrix techniques
Verify solutions by substitution
Compare matrix method with other techniques
Q/A on matrix solution methods using step-by-step approach
Discussions on solution verification using substitution
Solving 2×2 systems using complete method
Demonstrations using organized solution process
Explaining method advantages using comparisons
Chalk and blackboard, exercise books, previous elimination method examples
KLB Mathematics Book Three Pg 188-190
11 7
Matrices
Advanced simultaneous equation problems
Matrix applications in real-world problems
By the end of the lesson, the learner should be able to:
Solve complex simultaneous equation systems
Handle systems with no solution or infinite solutions
Interpret determinant values in solution context
Apply matrix methods to word problems
Q/A on complex systems using special cases
Discussions on solution types using geometric interpretation
Solving challenging problems using complete analysis
Demonstrations using classification methods
Explaining geometric meaning using line concepts
Chalk and blackboard, exercise books, graph paper if available
Chalk and blackboard, local business examples, exercise books
KLB Mathematics Book Three Pg 188-190
12 1
Matrices
Transpose of matrices
By the end of the lesson, the learner should be able to:
Define and calculate matrix transpose
Understand transpose properties
Apply transpose operations correctly
Solve problems involving transpose
Q/A on transpose concepts using reflection ideas
Discussions on row-column interchange using visual methods
Solving transpose problems using systematic approach
Demonstrations using flip and rotate concepts
Explaining properties using symmetry ideas
Chalk and blackboard, exercise books, paper cutouts for demonstration
KLB Mathematics Book Three Pg 170-174
12 2
Matrices
Matrix equation solving
By the end of the lesson, the learner should be able to:
Solve matrix equations systematically
Find unknown matrices in equations
Apply inverse operations to solve equations
Verify matrix equation solutions
Q/A on equation solving using algebraic analogy
Discussions on unknown determination using systematic methods
Solving matrix equations using step-by-step approach
Demonstrations using organized solution procedures
Explaining verification using checking methods
Chalk and blackboard, exercise books, algebra reference examples
KLB Mathematics Book Three Pg 183-190
12 3
Formulae and Variations
Introduction to formulae
Subject of a formula - basic cases
By the end of the lesson, the learner should be able to:
Define formulae and identify formula components
Recognize formulae in everyday contexts
Understand the relationship between variables
Appreciate the importance of formulae in mathematics
Q/A on familiar formulae from daily life
Discussions on cooking recipes as formulae
Analyzing distance-time relationships using walking examples
Demonstrations using perimeter and area calculations
Explaining formula notation using simple examples
Chalk and blackboard, measuring tape or string, exercise books
Chalk and blackboard, simple balance (stones and stick), exercise books
KLB Mathematics Book Three Pg 191-193
12 4
Formulae and Variations
Subject of a formula - intermediate cases
By the end of the lesson, the learner should be able to:
Make complex variables the subject of formulae
Handle formulae with fractions and powers
Apply multiple inverse operations systematically
Solve intermediate difficulty problems
Q/A on complex rearrangement using systematic approach
Discussions on fraction handling using common denominators
Solving intermediate problems using organized methods
Demonstrations using step-by-step blackboard work
Explaining systematic approaches using flowcharts
Chalk and blackboard, fraction strips made from paper, exercise books
KLB Mathematics Book Three Pg 191-193
12 5
Formulae and Variations
Subject of a formula - advanced cases
By the end of the lesson, the learner should be able to:
Make variables subject in complex formulae
Handle square roots and quadratic expressions
Apply advanced algebraic manipulation
Solve challenging subject transformation problems
Q/A on advanced manipulation using careful steps
Discussions on square root handling using examples
Solving complex problems using systematic approach
Demonstrations using detailed blackboard work
Explaining quadratic handling using factoring
Chalk and blackboard, squared paper patterns, exercise books
KLB Mathematics Book Three Pg 191-193
12 6
Formulae and Variations
Applications of formula manipulation
Introduction to variation
By the end of the lesson, the learner should be able to:
Apply formula rearrangement to practical problems
Solve real-world problems using formula manipulation
Calculate unknown quantities in various contexts
Interpret results in meaningful situations
Q/A on practical applications using local examples
Discussions on real-world formula use in farming/building
Solving application problems using formula rearrangement
Demonstrations using construction and farming scenarios
Explaining practical interpretation using community examples
Chalk and blackboard, local measurement tools, exercise books
Chalk and blackboard, local price lists from markets, exercise books
KLB Mathematics Book Three Pg 191-193
12 7
Formulae and Variations
Direct variation - introduction
By the end of the lesson, the learner should be able to:
Understand direct proportionality concepts
Recognize direct variation patterns
Use direct variation notation correctly
Calculate constants of proportionality
Q/A on direct relationships using simple examples
Discussions on proportional changes using market scenarios
Solving basic direct variation problems
Demonstrations using doubling and tripling examples
Explaining proportionality using ratio concepts
Chalk and blackboard, beans or stones for counting, exercise books
KLB Mathematics Book Three Pg 194-196
13

End term exams

14

Closing week and revision


Your Name Comes Here


Download

Feedback