Home






SCHEME OF WORK
Mathematics
Form 3 2025
TERM II
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1 1
Circles: Chords and Tangents
Length of an arc
By the end of the lesson, the learner should be able to:
Calculate the length of an arc
Apply arc length formula
Understand arc-radius relationships
Q/A on circle properties and terminology
Discussions on arc measurement concepts
Solving basic arc length problems
Demonstrations of formula application
Explaining arc-angle relationships
Geometrical set, calculators
KLB Mathematics Book Three Pg 124-125
1 2-3
Circles: Chords and Tangents
Chords
Parallel chords
Equal chords
By the end of the lesson, the learner should be able to:
Calculate the length of a chord
Apply chord properties and theorems
Understand chord-radius relationships
Calculate the perpendicular bisector
Find the value of parallel chords
Apply parallel chord properties
Q/A on chord definition and properties
Discussions on chord calculation methods
Solving basic chord problems
Demonstrations of geometric constructions
Explaining chord theorems
Q/A on parallel chord concepts
Discussions on perpendicular bisector properties
Solving parallel chord problems
Demonstrations of construction techniques
Explaining geometric relationships
Geometrical set, calculators
KLB Mathematics Book Three Pg 126-128
KLB Mathematics Book Three Pg 129-131
1 4
Circles: Chords and Tangents
Intersecting chords
By the end of the lesson, the learner should be able to:
Calculate the length of intersecting chords
Apply intersecting chord theorem
Understand chord intersection properties
Q/A on chord intersection concepts
Discussions on intersection theorem
Solving basic intersection problems
Demonstrations of theorem application
Explaining geometric proofs
Geometrical set, calculators
KLB Mathematics Book Three Pg 132-135
1 5
Circles: Chords and Tangents
Intersecting chords
Chord properties
By the end of the lesson, the learner should be able to:
Calculate the length of intersecting chords
Solve complex intersection problems
Apply advanced chord theorems
Q/A on advanced intersection scenarios
Discussions on complex chord relationships
Solving challenging intersection problems
Demonstrations of advanced techniques
Explaining sophisticated applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 135-139
1 6
Circles: Chords and Tangents
Tangent to a circle
By the end of the lesson, the learner should be able to:
Construct a tangent to a circle
Understand tangent properties
Apply tangent construction methods
Q/A on tangent definition and properties
Discussions on tangent construction
Solving basic tangent problems
Demonstrations of construction techniques
Explaining tangent characteristics
Geometrical set, calculators
KLB Mathematics Book Three Pg 139-140
1 7
Circles: Chords and Tangents
Tangent to a circle
Properties of tangents to a circle from an external point
By the end of the lesson, the learner should be able to:
Calculate the length of tangent
Calculate the angle between tangents
Apply tangent measurement techniques
Q/A on tangent calculations
Discussions on tangent measurement
Solving tangent calculation problems
Demonstrations of measurement methods
Explaining tangent applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 141-142
2 1
Circles: Chords and Tangents
Tangent properties
By the end of the lesson, the learner should be able to:
Solve comprehensive tangent problems
Apply all tangent concepts
Integrate tangent knowledge systematically
Q/A on comprehensive tangent mastery
Discussions on integrated applications
Solving mixed tangent problems
Demonstrations of complete understanding
Explaining systematic problem-solving
Geometrical set, calculators
KLB Mathematics Book Three Pg 139-147
2 2-3
Circles: Chords and Tangents
Tangents to two circles
Contact of circles
By the end of the lesson, the learner should be able to:
Calculate the tangents of direct common tangents
Find direct common tangent properties
Apply two-circle tangent concepts
Calculate the radii of contact circles
Understand internal contact properties
Apply contact circle concepts
Q/A on two-circle tangent concepts
Discussions on direct tangent properties
Solving direct tangent problems
Demonstrations of construction methods
Explaining geometric relationships
Q/A on circle contact concepts
Discussions on internal contact properties
Solving internal contact problems
Demonstrations of contact relationships
Explaining geometric principles
Geometrical set, calculators
KLB Mathematics Book Three Pg 148-149
KLB Mathematics Book Three Pg 151-153
2 4
Circles: Chords and Tangents
Contact of circles
Circle contact
By the end of the lesson, the learner should be able to:
Calculate the radii of contact circles
Understand external contact properties
Compare internal and external contact
Q/A on external contact concepts
Discussions on contact type differences
Solving external contact problems
Demonstrations of contact analysis
Explaining contact applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 153-154
2 5
Circles: Chords and Tangents
Angle in alternate segment
By the end of the lesson, the learner should be able to:
Calculate the angles in alternate segments
Apply alternate segment theorem
Understand segment angle properties
Q/A on alternate segment concepts
Discussions on segment angle relationships
Solving basic segment problems
Demonstrations of theorem application
Explaining geometric proofs
Geometrical set, calculators
KLB Mathematics Book Three Pg 157-160
2 6
Circles: Chords and Tangents
Angle in alternate segment
By the end of the lesson, the learner should be able to:
Calculate the angles in alternate segments
Solve complex segment problems
Apply advanced segment theorems
Q/A on advanced segment applications
Discussions on complex angle relationships
Solving challenging segment problems
Demonstrations of sophisticated techniques
Explaining advanced applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 160-161
2 7
Circles: Chords and Tangents
Circumscribed circle
Escribed circles
By the end of the lesson, the learner should be able to:
Construct circumscribed circles
Find circumscribed circle properties
Apply circumscription concepts
Q/A on circumscription concepts
Discussions on circumscribed circle construction
Solving circumscription problems
Demonstrations of construction techniques
Explaining circumscription applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 165
3 1
Circles: Chords and Tangents
Centroid
By the end of the lesson, the learner should be able to:
Construct centroid
Find centroid properties
Apply centroid concepts
Q/A on centroid definition and properties
Discussions on centroid construction
Solving centroid problems
Demonstrations of construction techniques
Explaining centroid applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 166
3 2-3
Circles: Chords and Tangents
Matrices
Orthocenter
Circle and triangle relationships
Introduction and real-life applications
Order of a matrix and elements
Square matrices, row and column matrices
By the end of the lesson, the learner should be able to:
Construct orthocenter
Find orthocenter properties
Apply orthocenter concepts
Define matrices and identify matrix applications
Recognize matrices in everyday contexts
Understand tabular data representation
Appreciate the importance of matrices
Q/A on orthocenter concepts
Discussions on orthocenter construction
Solving orthocenter problems
Demonstrations of construction methods
Explaining orthocenter applications
Q/A on tabular data in daily life
Discussions on school exam results tables
Analyzing bus timetables and price lists
Demonstrations using newspaper sports tables
Explaining matrix notation using grid patterns
Geometrical set, calculators
Old newspapers with league tables, chalk and blackboard, exercise books
Chalk and blackboard, ruled exercise books, class register
Paper cutouts, chalk and blackboard, counters or bottle tops
KLB Mathematics Book Three Pg 167
KLB Mathematics Book Three Pg 168-169
3 4
Matrices
Addition of matrices
Subtraction of matrices
Combined addition and subtraction
By the end of the lesson, the learner should be able to:
Add matrices of the same order
Apply matrix addition rules correctly
Understand compatibility for addition
Solve matrix addition problems systematically
Q/A on matrix addition using number examples
Discussions on element-wise addition using counters
Solving basic addition using blackboard work
Demonstrations using physical counting objects
Explaining compatibility using size comparisons
Counters or stones, chalk and blackboard, exercise books
Chalk and blackboard, exercise books, number cards made from cardboard
Chalk and blackboard, exercise books, locally made operation cards
KLB Mathematics Book Three Pg 170-171
3 5
Matrices
Scalar multiplication
Introduction to matrix multiplication
Matrix multiplication (2×2 matrices)
By the end of the lesson, the learner should be able to:
Multiply matrices by scalar quantities
Apply scalar multiplication rules
Understand the effect of scalar multiplication
Solve scalar multiplication problems
Q/A on scalar multiplication using times tables
Discussions on scaling using multiplication concepts
Solving scalar problems using repeated addition
Demonstrations using groups of objects
Explaining scalar effects using enlargement concepts
Beans or stones for grouping, chalk and blackboard, exercise books
Chalk and blackboard, rulers for tracing, exercise books
Chalk and blackboard, exercise books, homemade grid templates
KLB Mathematics Book Three Pg 174-175
3 6
Matrices
Matrix multiplication (larger matrices)
By the end of the lesson, the learner should be able to:
Multiply matrices of various orders
Apply multiplication to 3×3 and larger matrices
Determine when multiplication is possible
Calculate products efficiently
Q/A on larger matrix multiplication using patterns
Discussions on efficiency techniques using shortcuts
Solving advanced problems using systematic methods
Demonstrations using organized calculation procedures
Explaining general principles using examples
Chalk and blackboard, large sheets of paper for working, exercise books
KLB Mathematics Book Three Pg 176-179
3 7
Matrices
Properties of matrix multiplication
Real-world matrix multiplication applications
By the end of the lesson, the learner should be able to:
Understand non-commutativity of matrix multiplication
Apply associative and distributive properties
Distinguish between pre and post multiplication
Solve problems involving multiplication properties
Q/A on multiplication properties using counterexamples
Discussions on order importance using practical examples
Solving property-based problems using verification
Demonstrations using concrete examples
Explaining distributive law using expansion
Chalk and blackboard, exercise books, cardboard for property cards
Chalk and blackboard, local price lists, exercise books
KLB Mathematics Book Three Pg 174-179
4 1
Matrices
Identity matrix
By the end of the lesson, the learner should be able to:
Define and identify identity matrices
Understand identity matrix properties
Apply identity matrices in multiplication
Recognize the multiplicative identity role
Q/A on identity concepts using number 1 analogy
Discussions on multiplicative identity using examples
Solving identity problems using pattern recognition
Demonstrations using multiplication by 1 concept
Explaining diagonal properties using visual patterns
Chalk and blackboard, exercise books, pattern cards made from paper
KLB Mathematics Book Three Pg 182-183
4 2-3
Matrices
Determinant of 2×2 matrices
Inverse of 2×2 matrices - theory
Inverse of 2×2 matrices - practice
By the end of the lesson, the learner should be able to:
Calculate determinants of 2×2 matrices
Apply the determinant formula correctly
Understand geometric interpretation of determinants
Use determinants to classify matrices
Calculate inverses of 2×2 matrices systematically
Verify inverse calculations through multiplication
Apply inverse properties correctly
Solve complex inverse problems
Q/A on determinant calculation using cross multiplication
Discussions on formula application using memory aids
Solving determinant problems using systematic approach
Demonstrations using cross pattern method
Explaining geometric meaning using area concepts
Q/A on inverse calculation verification methods
Discussions on accuracy checking using multiplication
Solving advanced inverse problems using practice
Demonstrations using verification procedures
Explaining checking methods using examples
Chalk and blackboard, exercise books, crossed sticks for demonstration
Chalk and blackboard, exercise books, fraction examples
Chalk and blackboard, exercise books, scrap paper for verification
KLB Mathematics Book Three Pg 183
KLB Mathematics Book Three Pg 185-187
4 4
Matrices
Introduction to solving simultaneous equations
Solving 2×2 simultaneous equations using matrices
By the end of the lesson, the learner should be able to:
Understand matrix representation of simultaneous equations
Identify coefficient and constant matrices
Set up matrix equations correctly
Recognize the structure of linear systems
Q/A on equation representation using familiar equations
Discussions on coefficient identification using examples
Solving setup problems using systematic approach
Demonstrations using equation breakdown method
Explaining structure using organized layout
Chalk and blackboard, exercise books, equation examples from previous topics
Chalk and blackboard, exercise books, previous elimination method examples
KLB Mathematics Book Three Pg 188-189
4 5
Matrices
Advanced simultaneous equation problems
By the end of the lesson, the learner should be able to:
Solve complex simultaneous equation systems
Handle systems with no solution or infinite solutions
Interpret determinant values in solution context
Apply matrix methods to word problems
Q/A on complex systems using special cases
Discussions on solution types using geometric interpretation
Solving challenging problems using complete analysis
Demonstrations using classification methods
Explaining geometric meaning using line concepts
Chalk and blackboard, exercise books, graph paper if available
KLB Mathematics Book Three Pg 188-190
4 6
Matrices
Matrix applications in real-world problems
Transpose of matrices
By the end of the lesson, the learner should be able to:
Apply matrix operations to practical scenarios
Solve business, engineering, and scientific problems
Model real situations using matrices
Interpret matrix solutions in context
Q/A on practical applications using local examples
Discussions on modeling using familiar situations
Solving comprehensive problems using matrix tools
Demonstrations using community-based scenarios
Explaining solution interpretation using meaningful contexts
Chalk and blackboard, local business examples, exercise books
Chalk and blackboard, exercise books, paper cutouts for demonstration
KLB Mathematics Book Three Pg 168-190
4 7
Matrices
Matrix equation solving
By the end of the lesson, the learner should be able to:
Solve matrix equations systematically
Find unknown matrices in equations
Apply inverse operations to solve equations
Verify matrix equation solutions
Q/A on equation solving using algebraic analogy
Discussions on unknown determination using systematic methods
Solving matrix equations using step-by-step approach
Demonstrations using organized solution procedures
Explaining verification using checking methods
Chalk and blackboard, exercise books, algebra reference examples
KLB Mathematics Book Three Pg 183-190
5 1
Formulae and Variations
Introduction to formulae
Subject of a formula - basic cases
By the end of the lesson, the learner should be able to:
Define formulae and identify formula components
Recognize formulae in everyday contexts
Understand the relationship between variables
Appreciate the importance of formulae in mathematics
Q/A on familiar formulae from daily life
Discussions on cooking recipes as formulae
Analyzing distance-time relationships using walking examples
Demonstrations using perimeter and area calculations
Explaining formula notation using simple examples
Chalk and blackboard, measuring tape or string, exercise books
Chalk and blackboard, simple balance (stones and stick), exercise books
KLB Mathematics Book Three Pg 191-193
5 2-3
Formulae and Variations
Subject of a formula - intermediate cases
Subject of a formula - advanced cases
Applications of formula manipulation
By the end of the lesson, the learner should be able to:
Make complex variables the subject of formulae
Handle formulae with fractions and powers
Apply multiple inverse operations systematically
Solve intermediate difficulty problems
Make variables subject in complex formulae
Handle square roots and quadratic expressions
Apply advanced algebraic manipulation
Solve challenging subject transformation problems
Q/A on complex rearrangement using systematic approach
Discussions on fraction handling using common denominators
Solving intermediate problems using organized methods
Demonstrations using step-by-step blackboard work
Explaining systematic approaches using flowcharts
Q/A on advanced manipulation using careful steps
Discussions on square root handling using examples
Solving complex problems using systematic approach
Demonstrations using detailed blackboard work
Explaining quadratic handling using factoring
Chalk and blackboard, fraction strips made from paper, exercise books
Chalk and blackboard, squared paper patterns, exercise books
Chalk and blackboard, local measurement tools, exercise books
KLB Mathematics Book Three Pg 191-193
5 4
Formulae and Variations
Introduction to variation
By the end of the lesson, the learner should be able to:
Understand the concept of variation
Distinguish between variables and constants
Recognize variation in everyday situations
Identify different types of variation
Q/A on variable relationships using daily examples
Discussions on changing quantities in nature and commerce
Analyzing variation patterns using local market prices
Demonstrations using speed-time relationships
Explaining variation types using practical examples
Chalk and blackboard, local price lists from markets, exercise books
KLB Mathematics Book Three Pg 194-196
5 5
Formulae and Variations
Sequences and Series
Direct variation - introduction
Introduction to sequences and finding terms
By the end of the lesson, the learner should be able to:
Understand direct proportionality concepts
Recognize direct variation patterns
Use direct variation notation correctly
Calculate constants of proportionality
Q/A on direct relationships using simple examples
Discussions on proportional changes using market scenarios
Solving basic direct variation problems
Demonstrations using doubling and tripling examples
Explaining proportionality using ratio concepts
Chalk and blackboard, beans or stones for counting, exercise books
Chalk and blackboard, stones or beans for patterns, exercise books
KLB Mathematics Book Three Pg 194-196
5 6
Sequences and Series
General term of sequences and applications
By the end of the lesson, the learner should be able to:
Develop general rules for sequences
Express the nth term using algebraic notation
Find specific terms using general formulas
Apply sequence concepts to practical problems
Q/A on rule formulation using systematic approach
Discussions on algebraic expression development
Solving general term and application problems
Demonstrations using position-value relationships
Explaining practical relevance using community examples
Chalk and blackboard, numbered cards made from paper, exercise books
KLB Mathematics Book Three Pg 207-208
5 7
Sequences and Series
Arithmetic sequences and nth term
By the end of the lesson, the learner should be able to:
Define arithmetic sequences and common differences
Calculate common differences correctly
Derive and apply the nth term formula
Solve problems using arithmetic sequence concepts
Q/A on arithmetic patterns using step-by-step examples
Discussions on constant difference patterns and formula derivation
Solving arithmetic sequence problems systematically
Demonstrations using equal-step progressions
Explaining formula structure using algebraic reasoning
Chalk and blackboard, measuring tape or string, exercise books
KLB Mathematics Book Three Pg 209-210
6 1
Sequences and Series
Arithmetic sequence applications
Geometric sequences and nth term
By the end of the lesson, the learner should be able to:
Solve complex arithmetic sequence problems
Apply arithmetic sequences to real-world problems
Handle word problems involving arithmetic sequences
Model practical situations using arithmetic progressions
Q/A on practical applications using local business examples
Discussions on salary progression and savings plans
Solving real-world problems using sequence methods
Demonstrations using employment and finance scenarios
Explaining practical interpretation using meaningful contexts
Chalk and blackboard, local employment/savings examples, exercise books
Chalk and blackboard, objects for doubling demonstrations, exercise books
KLB Mathematics Book Three Pg 209-210
6 2-3
Sequences and Series
Geometric sequence applications
Arithmetic series and sum formula
Geometric series and applications
By the end of the lesson, the learner should be able to:
Solve complex geometric sequence problems
Apply geometric sequences to real-world problems
Handle population growth and depreciation problems
Model exponential patterns using sequences
Define arithmetic series as sums of sequences
Derive the sum formula for arithmetic series
Apply the arithmetic series formula systematically
Calculate sums efficiently using the formula
Q/A on practical applications using population/growth examples
Discussions on exponential growth in nature and economics
Solving real-world problems using geometric methods
Demonstrations using population and business scenarios
Explaining practical interpretation using meaningful contexts
Q/A on series concepts using summation examples
Discussions on sequence-to-series relationships and formula derivation
Solving arithmetic series problems using step-by-step approach
Demonstrations using cumulative sum examples
Explaining derivation logic using algebraic reasoning
Chalk and blackboard, population/growth data examples, exercise books
Chalk and blackboard, counting materials for summation, exercise books
Chalk and blackboard, convergence demonstration materials, exercise books
KLB Mathematics Book Three Pg 211-213
KLB Mathematics Book Three Pg 214-215
6 4
Sequences and Series
Mixed problems and advanced applications
By the end of the lesson, the learner should be able to:
Combine arithmetic and geometric concepts
Solve complex mixed sequence and series problems
Apply appropriate methods for different types
Model real-world situations using mathematical sequences
Q/A on problem type identification using systematic analysis
Discussions on method selection and comprehensive applications
Solving mixed problems using appropriate techniques
Demonstrations using interdisciplinary scenarios
Explaining method choice using logical reasoning
Chalk and blackboard, mixed problem collections, exercise books
KLB Mathematics Book Three Pg 207-219
6 5
Sequences and Series
Vectors (II)
Sequences in nature and technology
Coordinates in two dimensions
By the end of the lesson, the learner should be able to:
Identify mathematical patterns in natural phenomena
Analyze sequences in biological and technological contexts
Apply sequence concepts to environmental problems
Appreciate mathematics in the natural and modern world
Q/A on natural and technological patterns using examples
Discussions on biological sequences and digital applications
Solving nature and technology-based problems
Demonstrations using natural pattern examples
Explaining mathematical beauty using real phenomena
Chalk and blackboard, natural and technology examples, exercise books
Chalk and blackboard, squared paper or grid drawn on ground, exercise books
KLB Mathematics Book Three Pg 207-219
6 6
Vectors (II)
Coordinates in three dimensions
By the end of the lesson, the learner should be able to:
Identify the coordinates of a point in three dimensions
Understand the three-dimensional coordinate system
Plot points in 3D space systematically
Apply 3D coordinates to spatial problems
Q/A on 3D coordinate understanding using room corner references
Discussions on height, length, and width measurements
Solving 3D coordinate problems using systematic approaches
Demonstrations using classroom corners and building structures
Explaining 3D visualization using physical room examples
Chalk and blackboard, 3D models made from sticks and clay, exercise books
KLB Mathematics Book Three Pg 222
6 7
Vectors (II)
Column and position vectors in three dimensions
Position vectors and applications
By the end of the lesson, the learner should be able to:
Find a displacement and represent it in column vector
Calculate the position vector
Express vectors in column form
Apply column vector notation systematically
Q/A on displacement representation using movement examples
Discussions on vector notation using organized column format
Solving column vector problems using systematic methods
Demonstrations using physical movement and direction examples
Explaining vector components using practical displacement
Chalk and blackboard, movement demonstration space, exercise books
Chalk and blackboard, origin marking systems, exercise books
KLB Mathematics Book Three Pg 223-224
7

Series 1

8

Half-term

9 1
Vectors (II)
Column vectors in terms of unit vectors i, j, k
By the end of the lesson, the learner should be able to:
Express vectors in terms of unit vectors
Convert between column and unit vector notation
Understand the standard basis vector system
Apply unit vector representation systematically
Q/A on unit vector concepts using direction examples
Discussions on component representation using organized methods
Solving unit vector problems using systematic conversion
Demonstrations using perpendicular direction examples
Explaining basis vector concepts using coordinate axes
Chalk and blackboard, direction indicators, unit vector reference charts, exercise books
KLB Mathematics Book Three Pg 226-228
9 2-3
Vectors (II)
Vector operations using unit vectors
Magnitude of a vector in three dimensions
Magnitude applications and unit vectors
By the end of the lesson, the learner should be able to:
Express vectors in terms of unit vectors
Perform vector addition using unit vector notation
Calculate vector subtraction with i, j, k components
Apply scalar multiplication to unit vectors
Calculate the magnitude of a vector in three dimensions
Find unit vectors from given vectors
Apply magnitude concepts to practical problems
Use magnitude in vector normalization
Q/A on vector operations using component-wise calculation
Discussions on systematic operation methods
Solving vector operation problems using organized approaches
Demonstrations using component separation and combination
Explaining operation logic using algebraic reasoning
Q/A on magnitude and unit vector relationships
Discussions on normalization and direction finding
Solving magnitude and unit vector problems
Demonstrations using direction and length separation
Explaining practical applications using navigation examples
Chalk and blackboard, component calculation aids, exercise books
Chalk and blackboard, 3D measurement aids, exercise books
Chalk and blackboard, direction finding aids, exercise books
KLB Mathematics Book Three Pg 226-228
KLB Mathematics Book Three Pg 229-230
9 4
Vectors (II)
Parallel vectors
Collinearity
By the end of the lesson, the learner should be able to:
Identify parallel vectors
Determine when vectors are parallel
Apply parallel vector properties
Use scalar multiples in parallel relationships
Q/A on parallel identification using scalar multiple methods
Discussions on parallel relationships using geometric examples
Solving parallel vector problems using systematic testing
Demonstrations using parallel line and direction examples
Explaining parallel concepts using geometric reasoning
Chalk and blackboard, parallel line demonstrations, exercise books
Chalk and blackboard, straight-line demonstrations, exercise books
KLB Mathematics Book Three Pg 231-232
9 5
Vectors (II)
Advanced collinearity applications
By the end of the lesson, the learner should be able to:
Show that points are collinear
Apply collinearity to complex geometric problems
Integrate parallel and collinearity concepts
Solve advanced alignment problems
Q/A on advanced collinearity using complex scenarios
Discussions on geometric proof using vector methods
Solving challenging collinearity problems
Demonstrations using complex geometric constructions
Explaining advanced applications using comprehensive examples
Chalk and blackboard, complex geometric aids, exercise books
KLB Mathematics Book Three Pg 232-234
9 6
Vectors (II)
Proportional division of a line
External division of a line
By the end of the lesson, the learner should be able to:
Divide a line internally in the given ratio
Apply the internal division formula
Calculate division points using vector methods
Understand proportional division concepts
Q/A on internal division using systematic formula application
Discussions on ratio division using proportional methods
Solving internal division problems using organized approaches
Demonstrations using internal point construction examples
Explaining internal division using geometric visualization
Chalk and blackboard, internal division models, exercise books
Chalk and blackboard, external division models, exercise books
KLB Mathematics Book Three Pg 237-238
9 7
Vectors (II)
Combined internal and external division
By the end of the lesson, the learner should be able to:
Divide a line internally and externally in the given ratio
Apply both division formulas systematically
Compare internal and external division results
Handle mixed division problems
Q/A on combined division using comparative methods
Discussions on division type selection using problem analysis
Solving combined division problems using systematic approaches
Demonstrations using both division types
Explaining division relationships using geometric reasoning
Chalk and blackboard, combined division models, exercise books
KLB Mathematics Book Three Pg 239
10 1
Vectors (II)
Ratio theorem
Advanced ratio theorem applications
By the end of the lesson, the learner should be able to:
Express position vectors
Apply the ratio theorem to geometric problems
Use ratio theorem in complex calculations
Find position vectors using ratio relationships
Q/A on ratio theorem application using systematic methods
Discussions on position vector calculation using ratio methods
Solving ratio theorem problems using organized approaches
Demonstrations using ratio-based position finding
Explaining theorem applications using logical reasoning
Chalk and blackboard, ratio theorem aids, exercise books
Chalk and blackboard, advanced ratio models, exercise books
KLB Mathematics Book Three Pg 240-242
10 2-3
Vectors (II)
Mid-point
Ratio theorem and midpoint integration
Advanced ratio theorem applications
By the end of the lesson, the learner should be able to:
Find the mid-points of the given vectors
Apply midpoint formulas in vector contexts
Use midpoint concepts in geometric problems
Calculate midpoints systematically
Use ratio theorem to find the given vectors
Apply midpoint and ratio concepts together
Solve complex ratio and midpoint problems
Integrate division and midpoint methods
Q/A on midpoint calculation using vector averaging methods
Discussions on midpoint applications using geometric examples
Solving midpoint problems using systematic approaches
Demonstrations using midpoint construction and calculation
Explaining midpoint concepts using practical examples
Q/A on integrated problem-solving using combined methods
Discussions on complex scenario analysis using systematic approaches
Solving challenging problems using integrated techniques
Demonstrations using comprehensive geometric examples
Explaining integration using logical problem-solving
Chalk and blackboard, midpoint demonstration aids, exercise books
Chalk and blackboard, complex problem materials, exercise books
Chalk and blackboard, advanced geometric aids, exercise books
KLB Mathematics Book Three Pg 243
KLB Mathematics Book Three Pg 244-245
10 4
Vectors (II)
Applications of vectors in geometry
By the end of the lesson, the learner should be able to:
Use vectors to show the diagonals of a parallelogram
Apply vector methods to geometric proofs
Demonstrate parallelogram properties using vectors
Solve geometric problems using vector techniques
Q/A on geometric proof using vector methods
Discussions on parallelogram properties using vector analysis
Solving geometric problems using systematic vector techniques
Demonstrations using vector-based geometric constructions
Explaining geometric relationships using vector reasoning
Chalk and blackboard, parallelogram models, exercise books
KLB Mathematics Book Three Pg 248-249
10 5
Vectors (II)
Rectangle diagonal applications
Advanced geometric applications
By the end of the lesson, the learner should be able to:
Use vectors to show the diagonals of a rectangle
Apply vector methods to rectangle properties
Prove rectangle theorems using vectors
Compare parallelogram and rectangle diagonal properties
Q/A on rectangle properties using vector analysis
Discussions on diagonal relationships using vector methods
Solving rectangle problems using systematic approaches
Demonstrations using rectangle constructions and vector proofs
Explaining rectangle properties using vector reasoning
Chalk and blackboard, rectangle models, exercise books
Chalk and blackboard, advanced geometric models, exercise books
KLB Mathematics Book Three Pg 248-250
10 6
Binomial Expansion
Binomial expansions up to power four
By the end of the lesson, the learner should be able to:
Expand binomial function up to power four
Apply systematic multiplication methods
Recognize coefficient patterns in expansions
Use multiplication to expand binomial expressions
Q/A on algebraic multiplication using familiar expressions
Discussions on systematic expansion using step-by-step methods
Solving basic binomial multiplication problems
Demonstrations using area models and rectangular arrangements
Explaining pattern recognition using organized layouts
Chalk and blackboard, rectangular cutouts from paper, exercise books
KLB Mathematics Book Three Pg 256
10 7
Binomial Expansion
Binomial expansions up to power four (continued)
Pascal's triangle
By the end of the lesson, the learner should be able to:
Expand binomial function up to power four
Handle increasingly complex coefficient patterns
Apply systematic expansion techniques efficiently
Verify expansions using substitution methods
Q/A on power expansion using multiplication techniques
Discussions on coefficient identification using pattern analysis
Solving expansion problems using systematic approaches
Demonstrations using geometric representations
Explaining verification methods using numerical substitution
Chalk and blackboard, squared paper for geometric models, exercise books
Chalk and blackboard, triangular patterns drawn/cut from paper, exercise books
KLB Mathematics Book Three Pg 256
11 1
Binomial Expansion
Pascal's triangle applications
By the end of the lesson, the learner should be able to:
Use Pascal's triangle
Apply Pascal's triangle to binomial expansions efficiently
Use triangle coefficients for various powers
Solve expansion problems using triangle methods
Q/A on triangle application using coefficient identification
Discussions on efficient expansion using triangle methods
Solving expansion problems using Pascal's triangle
Demonstrations using triangle-guided calculations
Explaining efficiency benefits using comparative methods
Chalk and blackboard, Pascal's triangle reference charts, exercise books
KLB Mathematics Book Three Pg 257-258
11 2-3
Binomial Expansion
Pascal's triangle (continued)
Pascal's triangle advanced
Applications to numerical cases
By the end of the lesson, the learner should be able to:
Use Pascal's triangle
Apply triangle to complex expansion problems
Handle higher powers using Pascal's triangle
Integrate triangle concepts with algebraic expansion
Use Pascal's triangle
Apply general binomial theorem concepts
Understand combination notation in expansions
Use general term formula applications
Q/A on advanced triangle applications using complex examples
Discussions on higher power expansion using triangle methods
Solving challenging problems using Pascal's triangle
Demonstrations using detailed triangle constructions
Explaining integration using comprehensive examples
Q/A on general formula understanding using pattern analysis
Discussions on combination notation using counting principles
Solving general term problems using formula application
Demonstrations using systematic formula usage
Explaining general principles using algebraic reasoning
Chalk and blackboard, advanced triangle patterns, exercise books
Chalk and blackboard, combination calculation aids, exercise books
Chalk and blackboard, simple calculation aids, exercise books
KLB Mathematics Book Three Pg 258-259
11 4
Binomial Expansion
Applications to numerical cases (continued)
By the end of the lesson, the learner should be able to:
Use binomial expansion to solve numerical problems
Apply binomial methods to complex calculations
Handle decimal approximations using expansions
Solve practical numerical problems
Q/A on advanced numerical applications using complex scenarios
Discussions on decimal approximation using expansion techniques
Solving challenging numerical problems using systematic methods
Demonstrations using detailed calculation procedures
Explaining practical relevance using real-world examples
Chalk and blackboard, advanced calculation examples, exercise books
KLB Mathematics Book Three Pg 259-260
11 5
Probability
Introduction
Experimental Probability
By the end of the lesson, the learner should be able to:
Calculate the experimental probability
Understand probability concepts in daily life
Distinguish between certain and uncertain events
Recognize probability situations
Q/A on uncertain events from daily life experiences
Discussions on weather prediction and game outcomes
Analyzing chance events using coin tossing and dice rolling
Demonstrations using simple probability experiments
Explaining probability language using familiar examples
Chalk and blackboard, coins, dice made from cardboard, exercise books
Chalk and blackboard, coins, cardboard dice, tally charts, exercise books
KLB Mathematics Book Three Pg 262-264
11 6
Probability
Experimental Probability applications
By the end of the lesson, the learner should be able to:
Calculate the experimental probability
Apply experimental methods to various scenarios
Handle large sample experiments
Analyze experimental probability patterns
Q/A on advanced experimental techniques using extended trials
Discussions on sample size effects using comparative data
Solving complex experimental problems using systematic methods
Demonstrations using extended experimental procedures
Explaining pattern analysis using accumulated data
Chalk and blackboard, extended experimental materials, data recording sheets, exercise books
KLB Mathematics Book Three Pg 262-264
11 7
Probability
Range of Probability Measure
Probability Space
By the end of the lesson, the learner should be able to:
Calculate the range of probability measure
Express probabilities on scale from 0 to 1
Convert between fractions, decimals, and percentages
Interpret probability values correctly
Q/A on probability scale using number line representations
Discussions on probability conversion between forms
Solving probability scale problems using systematic methods
Demonstrations using probability line and scale examples
Explaining scale interpretation using practical scenarios
Chalk and blackboard, number line drawings, probability scale charts, exercise books
Chalk and blackboard, playing cards (locally made), spinners from cardboard, exercise books
KLB Mathematics Book Three Pg 265-266
12 1
Probability
Theoretical Probability
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Apply mathematical reasoning to find probabilities
Use equally likely outcome assumptions
Calculate theoretical probabilities systematically
Q/A on theoretical calculation using mathematical principles
Discussions on equally likely assumptions and calculations
Solving theoretical problems using systematic approaches
Demonstrations using fair dice and unbiased coin examples
Explaining mathematical probability using logical reasoning
Chalk and blackboard, fair dice and coins, probability calculation aids, exercise books
KLB Mathematics Book Three Pg 266-268
12 2-3
Probability
Theoretical Probability advanced
Theoretical Probability applications
Combined Events
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Apply theoretical probability to complex problems
Handle multiple outcome scenarios
Solve advanced theoretical problems
Find the probability of a combined events
Understand compound events and combinations
Distinguish between different event types
Apply basic combination rules
Q/A on advanced theoretical applications using complex scenarios
Discussions on multiple outcome analysis using systematic methods
Solving challenging theoretical problems using organized approaches
Demonstrations using complex probability setups
Explaining advanced theoretical concepts using detailed reasoning
Q/A on event combination using practical examples
Discussions on exclusive and inclusive event identification
Solving basic combined event problems using visual methods
Demonstrations using card drawing and dice rolling combinations
Explaining combination principles using Venn diagrams
Chalk and blackboard, complex probability materials, advanced calculation aids, exercise books
Chalk and blackboard, local game examples, practical scenario materials, exercise books
Chalk and blackboard, playing cards, multiple dice, Venn diagram drawings, exercise books
KLB Mathematics Book Three Pg 268-270
KLB Mathematics Book Three Pg 272-273
12 4
Probability
Combined Events OR probability
Independent Events
By the end of the lesson, the learner should be able to:
Find the probability of a combined events
Apply addition rule for OR events
Calculate "A or B" probabilities
Handle mutually exclusive events
Q/A on addition rule application using systematic methods
Discussions on mutually exclusive identification and calculation
Solving OR probability problems using organized approaches
Demonstrations using card selection and event combination
Explaining addition rule logic using Venn diagrams
Chalk and blackboard, Venn diagram materials, card examples, exercise books
Chalk and blackboard, multiple coins and dice, independence demonstration materials, exercise books
KLB Mathematics Book Three Pg 272-274
12 5
Probability
Independent Events advanced
By the end of the lesson, the learner should be able to:
Find the probability of independent events
Distinguish between independent and dependent events
Apply conditional probability concepts
Handle complex independence scenarios
Q/A on independence verification using mathematical methods
Discussions on dependence concepts using card drawing examples
Solving dependent and independent event problems using systematic approaches
Demonstrations using replacement and non-replacement scenarios
Explaining conditional probability using practical examples
Chalk and blackboard, playing cards for replacement scenarios, multiple experimental setups, exercise books
KLB Mathematics Book Three Pg 276-278
12 6
Probability
Independent Events applications
Tree Diagrams
By the end of the lesson, the learner should be able to:
Find the probability of independent events
Apply independence to practical problems
Solve complex multi-event scenarios
Integrate independence with other concepts
Q/A on complex event analysis using systematic problem-solving
Discussions on rule selection and application strategies
Solving advanced combined problems using integrated approaches
Demonstrations using complex experimental scenarios
Explaining strategic problem-solving using logical analysis
Chalk and blackboard, complex experimental materials, advanced calculation aids, exercise books
Chalk and blackboard, tree diagram templates, branching materials, exercise books
KLB Mathematics Book Three Pg 278-280
12 7
Probability
Tree Diagrams advanced
By the end of the lesson, the learner should be able to:
Use tree diagrams to find probability
Apply trees to multi-stage problems
Handle complex sequential events
Calculate final probabilities using trees
Q/A on complex tree application using multi-stage examples
Discussions on replacement scenario handling
Solving complex tree problems using systematic calculation
Demonstrations using detailed tree constructions
Explaining systematic probability calculation using tree methods
Chalk and blackboard, complex tree examples, detailed calculation aids, exercise books
KLB Mathematics Book Three Pg 283-285

Your Name Comes Here


Download

Feedback