If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1 |
Trigonometry (II)
|
Radian measure
|
By the end of the
lesson, the learner
should be able to:
Convert degrees to radians and vice versa Apply radian measure in calculations Understand radian-degree relationships |
Q/A on angle measurement systems
Discussions on radian concepts Solving conversion problems Demonstrations of conversion methods Explaining radian applications |
Calculators, conversion charts
|
KLB Mathematics Book Three Pg 58-61
|
|
2 | 2 |
Trigonometry (II)
|
Simple trigonometric graphs
|
By the end of the
lesson, the learner
should be able to:
Draw tables for sine of values Plot graphs of sine functions Identify sine graph properties |
Q/A on coordinate graphing
Discussions on periodic functions Solving graphing problems Demonstrations of sine plotting Explaining graph characteristics |
Calculators, graph papers, plotting guides
|
KLB Mathematics Book Three Pg 62-63
|
|
2 | 3 |
Trigonometry (II)
|
Graphs of cosines
|
By the end of the
lesson, the learner
should be able to:
Draw tables for cosine of values Plot graphs of cosine functions Compare sine and cosine graphs |
Q/A on cosine properties
Discussions on graph relationships Solving cosine graphing problems Demonstrations of cosine plotting Explaining phase relationships |
Calculators, graph papers, plotting guides
|
KLB Mathematics Book Three Pg 63-64
|
|
2 | 4 |
Trigonometry (II)
|
Graphs of tan
|
By the end of the
lesson, the learner
should be able to:
Draw tables for tan of values Plot graphs of tan functions Identify asymptotes and discontinuities |
Q/A on tangent behavior
Discussions on function domains Solving tangent graphing problems Demonstrations of asymptote identification Explaining discontinuous functions |
Calculators, graph papers, plotting guides
|
KLB Mathematics Book Three Pg 64-65
|
|
2 | 5 |
Trigonometry (II)
|
The sine rule
|
By the end of the
lesson, the learner
should be able to:
State the sine rule Apply sine rule to find solution of triangles Solve triangles using sine rule |
Q/A on triangle properties
Discussions on sine rule applications Solving triangle problems Demonstrations of rule application Explaining ambiguous case |
Calculators, triangle worksheets
|
KLB Mathematics Book Three Pg 65-70
|
|
2 | 6 |
Trigonometry (II)
|
Cosine rule
|
By the end of the
lesson, the learner
should be able to:
State the cosine rule Apply cosine rule to find solution of triangles Choose appropriate rule for triangle solving |
Q/A on cosine rule concepts
Discussions on rule selection Solving complex triangle problems Demonstrations of cosine rule Explaining when to use each rule |
Calculators, triangle worksheets
|
KLB Mathematics Book Three Pg 71-75
|
|
2 | 7 |
Trigonometry (II)
|
Problem solving
|
By the end of the
lesson, the learner
should be able to:
Solve problems on cosines, sines and tan Apply trigonometry to real-world situations Integrate all trigonometric concepts |
Q/A on chapter consolidation
Discussions on practical applications Solving comprehensive problems Demonstrations of problem-solving strategies Explaining real-world trigonometry |
Calculators, comprehensive problem sets, real-world examples
|
KLB Mathematics Book Three Pg 76-77
|
|
3 | 1 |
Surds
|
Rational and irrational numbers
|
By the end of the
lesson, the learner
should be able to:
Classify numbers as rational and irrational numbers Identify rational and irrational numbers Distinguish between rational and irrational forms |
Q/A on number classification concepts
Discussions on rational vs irrational properties Solving classification problems Demonstrations of number identification Explaining decimal representations |
Calculators, number classification charts
|
KLB Mathematics Book Three Pg 78
|
|
3 | 2 |
Surds
|
Order of surds and simplification
|
By the end of the
lesson, the learner
should be able to:
State the order of surds Identify surd orders correctly Simplify surds to lowest terms |
Q/A on surd definition and properties
Discussions on surd order concepts Solving order identification problems Demonstrations of surd simplification Explaining simplification techniques |
Calculators, surd order examples
|
KLB Mathematics Book Three Pg 78-79
|
|
3 | 3 |
Surds
|
Simplification of surds practice
|
By the end of the
lesson, the learner
should be able to:
Simplify surds using factorization Express surds in simplest form Apply systematic simplification methods |
Q/A on factorization techniques
Discussions on factor identification Solving extensive simplification problems Demonstrations of step-by-step methods Explaining perfect square extraction |
Calculators, factor trees, simplification worksheets
|
KLB Mathematics Book Three Pg 79-80
|
|
3 | 4 |
Surds
|
Addition of surds
|
By the end of the
lesson, the learner
should be able to:
Add surds with like terms Combine surds of the same order Simplify surd addition expressions |
Q/A on like term concepts
Discussions on surd addition rules Solving addition problems systematically Demonstrations of combining techniques Explaining when surds can be added |
Calculators, addition rule charts
|
KLB Mathematics Book Three Pg 79-80
|
|
3 | 5 |
Surds
|
Subtraction of surds
|
By the end of the
lesson, the learner
should be able to:
Subtract surds with like terms Apply subtraction rules to surds Simplify surd subtraction expressions |
Q/A on subtraction principles
Discussions on surd subtraction methods Solving subtraction problems Demonstrations of systematic approaches Explaining subtraction verification |
Calculators, subtraction worksheets
|
KLB Mathematics Book Three Pg 80
|
|
3 | 6 |
Surds
|
Multiplication of surds
|
By the end of the
lesson, the learner
should be able to:
Multiply surds of the same order Apply multiplication rules to surds Simplify products of surds |
Q/A on multiplication concepts
Discussions on surd multiplication laws Solving multiplication problems Demonstrations of product simplification Explaining multiplication principles |
Calculators, multiplication rule guides
|
KLB Mathematics Book Three Pg 80-82
|
|
3 | 7 |
Surds
|
Division of surds
|
By the end of the
lesson, the learner
should be able to:
Divide surds of the same order Apply division rules to surds Simplify quotients of surds |
Q/A on division concepts
Discussions on surd division methods Solving division problems systematically Demonstrations of quotient simplification Explaining division techniques |
Calculators, division worksheets
|
KLB Mathematics Book Three Pg 81-82
|
|
4 | 1 |
Surds
|
Rationalizing the denominator
|
By the end of the
lesson, the learner
should be able to:
Rationalize the denominator of fractions Apply rationalization techniques Simplify expressions with surd denominators |
Q/A on rationalization concepts
Discussions on denominator clearing Solving rationalization problems Demonstrations of conjugate methods Explaining rationalization importance |
Calculators, rationalization guides
|
KLB Mathematics Book Three Pg 85-87
|
|
4 | 2 |
Surds
|
Advanced rationalization techniques
|
By the end of the
lesson, the learner
should be able to:
Rationalize complex expressions Apply advanced rationalization methods Handle multiple term denominators |
Q/A on complex rationalization
Discussions on advanced techniques Solving challenging rationalization problems Demonstrations of sophisticated methods Explaining complex denominator handling |
Calculators, advanced technique sheets
|
KLB Mathematics Book Three Pg 85-87
|
|
4 | 3 |
Further Logarithms
|
Introduction
|
By the end of the
lesson, the learner
should be able to:
Use calculators to find the logarithm of numbers Understand logarithmic notation and concepts Apply basic logarithmic principles |
Q/A on exponential and logarithmic relationships
Discussions on logarithm definition and properties Solving basic logarithm problems Demonstrations of calculator usage Explaining logarithm-exponential connections |
Calculators, logarithm definition charts
|
KLB Mathematics Book Three Pg 89
|
|
4 | 4 |
Further Logarithms
|
Laws of logarithms
|
By the end of the
lesson, the learner
should be able to:
State the laws of logarithms Apply basic logarithmic laws Use logarithm laws for simple calculations |
Q/A on logarithmic law foundations
Discussions on multiplication and division laws Solving problems using basic laws Demonstrations of law applications Explaining law derivations |
Calculators, logarithm law charts
|
KLB Mathematics Book Three Pg 90-93
|
|
4 | 5 |
Further Logarithms
|
Laws of logarithms
|
By the end of the
lesson, the learner
should be able to:
Use laws of logarithms to solve problems Apply advanced logarithmic laws Combine multiple laws in calculations |
Q/A on law mastery and applications
Discussions on power and root laws Solving complex law-based problems Demonstrations of combined law usage Explaining advanced law techniques |
Calculators, advanced law worksheets
|
KLB Mathematics Book Three Pg 90-93
|
|
4 | 6 |
Further Logarithms
|
Laws of logarithms
|
By the end of the
lesson, the learner
should be able to:
Use laws of logarithms to solve problems Master all logarithmic laws comprehensively Apply laws to challenging mathematical problems |
Q/A on comprehensive law understanding
Discussions on law selection strategies Solving challenging logarithmic problems Demonstrations of optimal law application Explaining problem-solving approaches |
Calculators, challenging problem sets
|
KLB Mathematics Book Three Pg 90-93
|
|
4 | 7 |
Further Logarithms
|
Logarithmic equations and expressions
|
By the end of the
lesson, the learner
should be able to:
Solve the logarithmic equations and expressions Apply algebraic methods to logarithmic equations Verify solutions of logarithmic equations |
Q/A on equation-solving techniques
Discussions on logarithmic equation types Solving basic logarithmic equations Demonstrations of solution methods Explaining verification techniques |
Calculators, equation-solving guides
|
KLB Mathematics Book Three Pg 93-95
|
|
5 | 1 |
Further Logarithms
|
Logarithmic equations and expressions
|
By the end of the
lesson, the learner
should be able to:
Solve the logarithmic equations and expressions Handle complex logarithmic equations Apply advanced solution techniques |
Q/A on advanced equation methods
Discussions on complex equation structures Solving challenging logarithmic equations Demonstrations of sophisticated techniques Explaining advanced solution strategies |
Calculators, advanced equation worksheets
|
KLB Mathematics Book Three Pg 93-95
|
|
5 | 2 |
Further Logarithms
|
Further computation using logarithms
|
By the end of the
lesson, the learner
should be able to:
Solve problems involving logarithms Apply logarithms to numerical computations Use logarithms for complex calculations |
Q/A on computational applications
Discussions on numerical problem-solving Solving computation-based problems Demonstrations of logarithmic calculations Explaining computational advantages |
Calculators, computation worksheets
|
KLB Mathematics Book Three Pg 95-96
|
|
5 | 3 |
Further Logarithms
|
Further computation using logarithms
|
By the end of the
lesson, the learner
should be able to:
Solve problems involving logarithms Apply logarithms to intermediate calculations Handle multi-step logarithmic computations |
Q/A on intermediate computational skills
Discussions on multi-step processes Solving intermediate computation problems Demonstrations of systematic approaches Explaining step-by-step methods |
Calculators, intermediate problem sets
|
KLB Mathematics Book Three Pg 95-96
|
|
5 | 4 |
Further Logarithms
|
Further computation using logarithms
|
By the end of the
lesson, the learner
should be able to:
Solve problems involving logarithms Master advanced logarithmic computations Apply logarithms to complex mathematical scenarios |
Q/A on advanced computational mastery
Discussions on complex calculation strategies Solving advanced computation problems Demonstrations of sophisticated methods Explaining optimal computational approaches |
Calculators, advanced computation guides
|
KLB Mathematics Book Three Pg 95-96
|
|
5 | 5 |
Further Logarithms
|
Problem solving
|
By the end of the
lesson, the learner
should be able to:
Solve problems involving logarithms Apply logarithms to computational applications Integrate logarithmic concepts systematically |
Q/A on integrated problem-solving
Discussions on application strategies Solving comprehensive computational problems Demonstrations of integrated approaches Explaining systematic problem-solving |
Calculators, comprehensive problem sets
|
KLB Mathematics Book Three Pg 97
|
|
5 | 6 |
Further Logarithms
|
Problem solving
|
By the end of the
lesson, the learner
should be able to:
Solve problems involving logarithms Apply logarithmic concepts to real-world situations Handle practical logarithmic applications |
Q/A on real-world applications
Discussions on practical problem contexts Solving real-world logarithmic problems Demonstrations of practical applications Explaining everyday logarithm usage |
Calculators, real-world application examples
|
KLB Mathematics Book Three Pg 97
|
|
5 | 7 |
Commercial Arithmetic
|
Simple interest
|
By the end of the
lesson, the learner
should be able to:
Calculate simple interest Apply simple interest formula Solve basic interest problems |
Q/A on interest concepts and terminology
Discussions on principal, rate, and time Solving basic simple interest problems Demonstrations of formula application Explaining interest calculations |
Calculators, simple interest charts
|
KLB Mathematics Book Three Pg 98-99
|
|
6 | 1 |
Commercial Arithmetic
|
Simple interest
|
By the end of the
lesson, the learner
should be able to:
Calculate simple interest Solve complex simple interest problems Apply simple interest to real-world situations |
Q/A on advanced simple interest concepts
Discussions on practical applications Solving complex interest problems Demonstrations of real-world scenarios Explaining business applications |
Calculators, real-world problem sets
|
KLB Mathematics Book Three Pg 98-101
|
|
6 | 2 |
Commercial Arithmetic
|
Compound interest
|
By the end of the
lesson, the learner
should be able to:
Calculate the compound interest Apply compound interest formula Understand compounding concepts |
Q/A on compound interest principles
Discussions on compounding frequency Solving basic compound interest problems Demonstrations of compound calculations Explaining compounding effects |
Calculators, compound interest tables
|
KLB Mathematics Book Three Pg 102-106
|
|
6 | 3 |
Commercial Arithmetic
|
Compound interest
|
By the end of the
lesson, the learner
should be able to:
Calculate the compound interest Solve advanced compound interest problems Compare simple and compound interest |
Q/A on advanced compounding scenarios
Discussions on investment comparisons Solving complex compound problems Demonstrations of comparison methods Explaining investment decisions |
Calculators, comparison worksheets
|
KLB Mathematics Book Three Pg 102-107
|
|
6 | 4 |
Commercial Arithmetic
|
Appreciation
|
By the end of the
lesson, the learner
should be able to:
Calculate the appreciation value of items Apply appreciation concepts Solve appreciation problems |
Q/A on appreciation concepts
Discussions on asset value increases Solving appreciation calculation problems Demonstrations of value growth Explaining appreciation applications |
Calculators, appreciation examples
|
KLB Mathematics Book Three Pg 108
|
|
6 | 5 |
Commercial Arithmetic
|
Depreciation
|
By the end of the
lesson, the learner
should be able to:
Calculate the depreciation value of items Apply depreciation methods Solve depreciation problems |
Q/A on depreciation concepts and methods
Discussions on asset value decreases Solving depreciation calculation problems Demonstrations of depreciation methods Explaining business depreciation |
Calculators, depreciation charts
|
KLB Mathematics Book Three Pg 109
|
|
6 | 6 |
Commercial Arithmetic
|
Hire purchase
|
By the end of the
lesson, the learner
should be able to:
Find the hire purchase Calculate hire purchase terms Understand hire purchase concepts |
Q/A on hire purchase principles
Discussions on installment buying Solving basic hire purchase problems Demonstrations of payment calculations Explaining hire purchase benefits |
Calculators, hire purchase examples
|
KLB Mathematics Book Three Pg 110-112
|
|
6 | 7 |
Commercial Arithmetic
|
Hire purchase
|
By the end of the
lesson, the learner
should be able to:
Find the hire purchase Solve complex hire purchase problems Calculate total costs and interest charges |
Q/A on advanced hire purchase scenarios
Discussions on complex payment structures Solving challenging hire purchase problems Demonstrations of cost analysis Explaining consumer finance decisions |
Calculators, complex hire purchase worksheets
|
KLB Mathematics Book Three Pg 110-112
|
|
7 | 1 |
Commercial Arithmetic
|
Income tax and P.A.Y.E
|
By the end of the
lesson, the learner
should be able to:
Calculate the income tax Calculate the P.A.Y.E Apply tax calculation methods |
Q/A on tax system concepts
Discussions on income tax and P.A.Y.E systems Solving tax calculation problems Demonstrations of tax computation Explaining taxation principles |
Income tax tables, calculators
|
KLB Mathematics Book Three Pg 112-117
|
|
7 | 2 |
Circles: Chords and Tangents
|
Length of an arc
|
By the end of the
lesson, the learner
should be able to:
Calculate the length of an arc Apply arc length formula Understand arc-radius relationships |
Q/A on circle properties and terminology
Discussions on arc measurement concepts Solving basic arc length problems Demonstrations of formula application Explaining arc-angle relationships |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 124-125
|
|
7 | 3 |
Circles: Chords and Tangents
|
Length of an arc
|
By the end of the
lesson, the learner
should be able to:
Calculate the length of an arc Solve complex arc length problems Apply arc concepts to real situations |
Q/A on advanced arc applications
Discussions on practical arc measurements Solving complex arc problems Demonstrations of real-world applications Explaining engineering and design uses |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 124-125
|
|
7 | 4 |
Circles: Chords and Tangents
|
Chords
|
By the end of the
lesson, the learner
should be able to:
Calculate the length of a chord Apply chord properties and theorems Understand chord-radius relationships |
Q/A on chord definition and properties
Discussions on chord calculation methods Solving basic chord problems Demonstrations of geometric constructions Explaining chord theorems |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 126-128
|
|
7 | 5 |
Circles: Chords and Tangents
|
Parallel chords
|
By the end of the
lesson, the learner
should be able to:
Calculate the perpendicular bisector Find the value of parallel chords Apply parallel chord properties |
Q/A on parallel chord concepts
Discussions on perpendicular bisector properties Solving parallel chord problems Demonstrations of construction techniques Explaining geometric relationships |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 129-131
|
|
7 | 6 |
Circles: Chords and Tangents
|
Equal chords
|
By the end of the
lesson, the learner
should be able to:
Find the length of equal chords Apply equal chord theorems Solve equal chord problems |
Q/A on equal chord properties
Discussions on chord equality conditions Solving equal chord problems Demonstrations of proof techniques Explaining theoretical foundations |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 131-132
|
|
7 | 7 |
Circles: Chords and Tangents
|
Intersecting chords
|
By the end of the
lesson, the learner
should be able to:
Calculate the length of intersecting chords Apply intersecting chord theorem Understand chord intersection properties |
Q/A on chord intersection concepts
Discussions on intersection theorem Solving basic intersection problems Demonstrations of theorem application Explaining geometric proofs |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 132-135
|
|
8 | 1 |
Circles: Chords and Tangents
|
Intersecting chords
|
By the end of the
lesson, the learner
should be able to:
Calculate the length of intersecting chords Solve complex intersection problems Apply advanced chord theorems |
Q/A on advanced intersection scenarios
Discussions on complex chord relationships Solving challenging intersection problems Demonstrations of advanced techniques Explaining sophisticated applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 135-139
|
|
8 | 2 |
Circles: Chords and Tangents
|
Chord properties
|
By the end of the
lesson, the learner
should be able to:
Solve comprehensive chord problems Integrate all chord concepts Apply chord knowledge systematically |
Q/A on comprehensive chord understanding
Discussions on integrated problem-solving Solving mixed chord problems Demonstrations of systematic approaches Explaining complete chord mastery |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 126-139
|
|
8 | 3 |
Circles: Chords and Tangents
|
Tangent to a circle
|
By the end of the
lesson, the learner
should be able to:
Construct a tangent to a circle Understand tangent properties Apply tangent construction methods |
Q/A on tangent definition and properties
Discussions on tangent construction Solving basic tangent problems Demonstrations of construction techniques Explaining tangent characteristics |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 139-140
|
|
8 | 4 |
Circles: Chords and Tangents
|
Tangent to a circle
|
By the end of the
lesson, the learner
should be able to:
Calculate the length of tangent Calculate the angle between tangents Apply tangent measurement techniques |
Q/A on tangent calculations
Discussions on tangent measurement Solving tangent calculation problems Demonstrations of measurement methods Explaining tangent applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 141-142
|
|
8 | 5 |
Circles: Chords and Tangents
|
Properties of tangents to a circle from an external point
|
By the end of the
lesson, the learner
should be able to:
State the properties of tangents to a circle from an external point Apply external tangent properties Solve external tangent problems |
Q/A on external tangent concepts
Discussions on tangent properties Solving external tangent problems Demonstrations of property applications Explaining theoretical foundations |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 142-144
|
|
8 | 6 |
Circles: Chords and Tangents
|
Tangent properties
|
By the end of the
lesson, the learner
should be able to:
Solve comprehensive tangent problems Apply all tangent concepts Integrate tangent knowledge systematically |
Q/A on comprehensive tangent mastery
Discussions on integrated applications Solving mixed tangent problems Demonstrations of complete understanding Explaining systematic problem-solving |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 139-147
|
|
8 | 7 |
Circles: Chords and Tangents
|
Tangents to two circles
|
By the end of the
lesson, the learner
should be able to:
Calculate the tangents of direct common tangents Find direct common tangent properties Apply two-circle tangent concepts |
Q/A on two-circle tangent concepts
Discussions on direct tangent properties Solving direct tangent problems Demonstrations of construction methods Explaining geometric relationships |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 148-149
|
|
9 | 1 |
Circles: Chords and Tangents
|
Tangents to two circles
|
By the end of the
lesson, the learner
should be able to:
Calculate the tangents of transverse common tangents Find transverse tangent properties Compare direct and transverse tangents |
Q/A on transverse tangent concepts
Discussions on tangent type differences Solving transverse tangent problems Demonstrations of comparison methods Explaining tangent classifications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 150-151
|
|
9 | 2 |
Circles: Chords and Tangents
|
Contact of circles
|
By the end of the
lesson, the learner
should be able to:
Calculate the radii of contact circles Understand internal contact properties Apply contact circle concepts |
Q/A on circle contact concepts
Discussions on internal contact properties Solving internal contact problems Demonstrations of contact relationships Explaining geometric principles |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 151-153
|
|
9 | 3 |
Circles: Chords and Tangents
|
Contact of circles
|
By the end of the
lesson, the learner
should be able to:
Calculate the radii of contact circles Understand external contact properties Compare internal and external contact |
Q/A on external contact concepts
Discussions on contact type differences Solving external contact problems Demonstrations of contact analysis Explaining contact applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 153-154
|
|
9 | 4 |
Circles: Chords and Tangents
|
Circle contact
|
By the end of the
lesson, the learner
should be able to:
Solve problems involving chords, tangents and contact circles Integrate all contact concepts Apply comprehensive contact knowledge |
Q/A on comprehensive contact understanding
Discussions on integrated problem-solving Solving complex contact problems Demonstrations of systematic approaches Explaining complete contact mastery |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 154-157
|
|
9 | 5 |
Circles: Chords and Tangents
|
Angle in alternate segment
|
By the end of the
lesson, the learner
should be able to:
Calculate the angles in alternate segments Apply alternate segment theorem Understand segment angle properties |
Q/A on alternate segment concepts
Discussions on segment angle relationships Solving basic segment problems Demonstrations of theorem application Explaining geometric proofs |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 157-160
|
|
9 | 6 |
Circles: Chords and Tangents
|
Angle in alternate segment
|
By the end of the
lesson, the learner
should be able to:
Calculate the angles in alternate segments Solve complex segment problems Apply advanced segment theorems |
Q/A on advanced segment applications
Discussions on complex angle relationships Solving challenging segment problems Demonstrations of sophisticated techniques Explaining advanced applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 160-161
|
|
9 | 7 |
Circles: Chords and Tangents
|
Circumscribed circle
|
By the end of the
lesson, the learner
should be able to:
Construct circumscribed circles Find circumscribed circle properties Apply circumscription concepts |
Q/A on circumscription concepts
Discussions on circumscribed circle construction Solving circumscription problems Demonstrations of construction techniques Explaining circumscription applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 165
|
|
10 | 1 |
Circles: Chords and Tangents
|
Escribed circles
|
By the end of the
lesson, the learner
should be able to:
Construct escribed circles Find escribed circle properties Apply escription concepts |
Q/A on escription concepts
Discussions on escribed circle construction Solving escription problems Demonstrations of construction methods Explaining escription applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 165-166
|
|
10 | 2 |
Circles: Chords and Tangents
|
Centroid
|
By the end of the
lesson, the learner
should be able to:
Construct centroid Find centroid properties Apply centroid concepts |
Q/A on centroid definition and properties
Discussions on centroid construction Solving centroid problems Demonstrations of construction techniques Explaining centroid applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 166
|
|
10 | 3 |
Circles: Chords and Tangents
|
Orthocenter
|
By the end of the
lesson, the learner
should be able to:
Construct orthocenter Find orthocenter properties Apply orthocenter concepts |
Q/A on orthocenter concepts
Discussions on orthocenter construction Solving orthocenter problems Demonstrations of construction methods Explaining orthocenter applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 167
|
|
10 | 4 |
Circles: Chords and Tangents
Matrices |
Circle and triangle relationships
Introduction and real-life applications |
By the end of the
lesson, the learner
should be able to:
Solve comprehensive circle-triangle problems Integrate all circle and triangle concepts Apply advanced geometric relationships |
Q/A on comprehensive geometric understanding
Discussions on integrated relationships Solving complex geometric problems Demonstrations of advanced applications Explaining sophisticated geometric principles |
Geometrical set, calculators
Old newspapers with league tables, chalk and blackboard, exercise books |
KLB Mathematics Book Three Pg 164-167
|
|
10 | 5 |
Matrices
|
Order of a matrix and elements
Square matrices, row and column matrices |
By the end of the
lesson, the learner
should be able to:
Determine the order of given matrices Identify matrix elements by position Use correct notation for matrix elements Distinguish between different matrix types |
Q/A on matrix structure using grid drawings
Discussions on rows and columns using classroom seating Solving element location using coordinate games Demonstrations using drawn grids on blackboard Explaining position notation using class register |
Chalk and blackboard, ruled exercise books, class register
Paper cutouts, chalk and blackboard, counters or bottle tops |
KLB Mathematics Book Three Pg 169-170
|
|
10 | 6 |
Matrices
|
Addition of matrices
Subtraction of matrices |
By the end of the
lesson, the learner
should be able to:
Add matrices of the same order Apply matrix addition rules correctly Understand compatibility for addition Solve matrix addition problems systematically |
Q/A on matrix addition using number examples
Discussions on element-wise addition using counters Solving basic addition using blackboard work Demonstrations using physical counting objects Explaining compatibility using size comparisons |
Counters or stones, chalk and blackboard, exercise books
Chalk and blackboard, exercise books, number cards made from cardboard |
KLB Mathematics Book Three Pg 170-171
|
|
10 | 7 |
Matrices
|
Combined addition and subtraction
Scalar multiplication |
By the end of the
lesson, the learner
should be able to:
Perform multiple matrix operations Apply order of operations in matrix calculations Solve complex combined problems Demonstrate systematic problem-solving |
Q/A on operation order using BODMAS rules
Discussions on complex expressions using step-by-step approach Solving multi-step problems using organized methods Demonstrations using systematic blackboard work Explaining operation sequencing using flowcharts |
Chalk and blackboard, exercise books, locally made operation cards
Beans or stones for grouping, chalk and blackboard, exercise books |
KLB Mathematics Book Three Pg 171-174
|
|
11 | 1 |
Matrices
|
Introduction to matrix multiplication
Matrix multiplication (2×2 matrices) |
By the end of the
lesson, the learner
should be able to:
Understand matrix multiplication prerequisites Learn compatibility requirements for multiplication Apply row-by-column multiplication method Calculate simple matrix products |
Q/A on multiplication compatibility using dimensions
Discussions on row-column method using finger tracing Solving basic multiplication using dot product method Demonstrations using physical row-column matching Explaining order requirements using practical examples |
Chalk and blackboard, rulers for tracing, exercise books
Chalk and blackboard, exercise books, homemade grid templates |
KLB Mathematics Book Three Pg 174-176
|
|
11 | 2 |
Matrices
|
Matrix multiplication (larger matrices)
|
By the end of the
lesson, the learner
should be able to:
Multiply matrices of various orders Apply multiplication to 3×3 and larger matrices Determine when multiplication is possible Calculate products efficiently |
Q/A on larger matrix multiplication using patterns
Discussions on efficiency techniques using shortcuts Solving advanced problems using systematic methods Demonstrations using organized calculation procedures Explaining general principles using examples |
Chalk and blackboard, large sheets of paper for working, exercise books
|
KLB Mathematics Book Three Pg 176-179
|
|
11 | 3 |
Matrices
|
Properties of matrix multiplication
|
By the end of the
lesson, the learner
should be able to:
Understand non-commutativity of matrix multiplication Apply associative and distributive properties Distinguish between pre and post multiplication Solve problems involving multiplication properties |
Q/A on multiplication properties using counterexamples
Discussions on order importance using practical examples Solving property-based problems using verification Demonstrations using concrete examples Explaining distributive law using expansion |
Chalk and blackboard, exercise books, cardboard for property cards
|
KLB Mathematics Book Three Pg 174-179
|
|
11 | 4 |
Matrices
|
Real-world matrix multiplication applications
|
By the end of the
lesson, the learner
should be able to:
Apply matrix multiplication to practical problems Solve business and economic applications Calculate costs, revenues, and quantities Interpret matrix multiplication results |
Q/A on practical applications using local business examples
Discussions on market problems using familiar contexts Solving real-world problems using matrix methods Demonstrations using shop keeper scenarios Explaining result interpretation using meaningful contexts |
Chalk and blackboard, local price lists, exercise books
|
KLB Mathematics Book Three Pg 176-179
|
|
11 | 5 |
Matrices
|
Identity matrix
|
By the end of the
lesson, the learner
should be able to:
Define and identify identity matrices Understand identity matrix properties Apply identity matrices in multiplication Recognize the multiplicative identity role |
Q/A on identity concepts using number 1 analogy
Discussions on multiplicative identity using examples Solving identity problems using pattern recognition Demonstrations using multiplication by 1 concept Explaining diagonal properties using visual patterns |
Chalk and blackboard, exercise books, pattern cards made from paper
|
KLB Mathematics Book Three Pg 182-183
|
|
11 | 6 |
Matrices
|
Determinant of 2×2 matrices
|
By the end of the
lesson, the learner
should be able to:
Calculate determinants of 2×2 matrices Apply the determinant formula correctly Understand geometric interpretation of determinants Use determinants to classify matrices |
Q/A on determinant calculation using cross multiplication
Discussions on formula application using memory aids Solving determinant problems using systematic approach Demonstrations using cross pattern method Explaining geometric meaning using area concepts |
Chalk and blackboard, exercise books, crossed sticks for demonstration
|
KLB Mathematics Book Three Pg 183
|
|
11 | 7 |
Matrices
|
Inverse of 2×2 matrices - theory
|
By the end of the
lesson, the learner
should be able to:
Understand the concept of matrix inverse Identify conditions for matrix invertibility Apply the inverse formula for 2×2 matrices Understand singular matrices |
Q/A on inverse concepts using reciprocal analogy
Discussions on invertibility using determinant conditions Solving basic inverse problems using formula Demonstrations using step-by-step method Explaining singular matrices using zero determinant |
Chalk and blackboard, exercise books, fraction examples
|
KLB Mathematics Book Three Pg 183-185
|
|
12 | 1 |
Matrices
|
Inverse of 2×2 matrices - practice
|
By the end of the
lesson, the learner
should be able to:
Calculate inverses of 2×2 matrices systematically Verify inverse calculations through multiplication Apply inverse properties correctly Solve complex inverse problems |
Q/A on inverse calculation verification methods
Discussions on accuracy checking using multiplication Solving advanced inverse problems using practice Demonstrations using verification procedures Explaining checking methods using examples |
Chalk and blackboard, exercise books, scrap paper for verification
|
KLB Mathematics Book Three Pg 185-187
|
|
12 | 2 |
Matrices
|
Introduction to solving simultaneous equations
|
By the end of the
lesson, the learner
should be able to:
Understand matrix representation of simultaneous equations Identify coefficient and constant matrices Set up matrix equations correctly Recognize the structure of linear systems |
Q/A on equation representation using familiar equations
Discussions on coefficient identification using examples Solving setup problems using systematic approach Demonstrations using equation breakdown method Explaining structure using organized layout |
Chalk and blackboard, exercise books, equation examples from previous topics
|
KLB Mathematics Book Three Pg 188-189
|
|
12 | 3 |
Matrices
|
Solving 2×2 simultaneous equations using matrices
|
By the end of the
lesson, the learner
should be able to:
Solve 2×2 simultaneous equations using matrix methods Apply inverse matrix techniques Verify solutions by substitution Compare matrix method with other techniques |
Q/A on matrix solution methods using step-by-step approach
Discussions on solution verification using substitution Solving 2×2 systems using complete method Demonstrations using organized solution process Explaining method advantages using comparisons |
Chalk and blackboard, exercise books, previous elimination method examples
|
KLB Mathematics Book Three Pg 188-190
|
|
12 | 4 |
Matrices
|
Advanced simultaneous equation problems
|
By the end of the
lesson, the learner
should be able to:
Solve complex simultaneous equation systems Handle systems with no solution or infinite solutions Interpret determinant values in solution context Apply matrix methods to word problems |
Q/A on complex systems using special cases
Discussions on solution types using geometric interpretation Solving challenging problems using complete analysis Demonstrations using classification methods Explaining geometric meaning using line concepts |
Chalk and blackboard, exercise books, graph paper if available
|
KLB Mathematics Book Three Pg 188-190
|
|
12 | 5 |
Matrices
|
Matrix applications in real-world problems
|
By the end of the
lesson, the learner
should be able to:
Apply matrix operations to practical scenarios Solve business, engineering, and scientific problems Model real situations using matrices Interpret matrix solutions in context |
Q/A on practical applications using local examples
Discussions on modeling using familiar situations Solving comprehensive problems using matrix tools Demonstrations using community-based scenarios Explaining solution interpretation using meaningful contexts |
Chalk and blackboard, local business examples, exercise books
|
KLB Mathematics Book Three Pg 168-190
|
|
12 | 6 |
Matrices
|
Transpose of matrices
|
By the end of the
lesson, the learner
should be able to:
Define and calculate matrix transpose Understand transpose properties Apply transpose operations correctly Solve problems involving transpose |
Q/A on transpose concepts using reflection ideas
Discussions on row-column interchange using visual methods Solving transpose problems using systematic approach Demonstrations using flip and rotate concepts Explaining properties using symmetry ideas |
Chalk and blackboard, exercise books, paper cutouts for demonstration
|
KLB Mathematics Book Three Pg 170-174
|
|
12 | 7 |
Matrices
|
Matrix equation solving
|
By the end of the
lesson, the learner
should be able to:
Solve matrix equations systematically Find unknown matrices in equations Apply inverse operations to solve equations Verify matrix equation solutions |
Q/A on equation solving using algebraic analogy
Discussions on unknown determination using systematic methods Solving matrix equations using step-by-step approach Demonstrations using organized solution procedures Explaining verification using checking methods |
Chalk and blackboard, exercise books, algebra reference examples
|
KLB Mathematics Book Three Pg 183-190
|
Your Name Comes Here