Home






SCHEME OF WORK
Mathematics
Form 3 2025
TERM II
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 1
Commercial Arithmetic
Simple interest
By the end of the lesson, the learner should be able to:
Calculate simple interest
Apply simple interest formula
Solve basic interest problems
Q/A on interest concepts and terminology
Discussions on principal, rate, and time
Solving basic simple interest problems
Demonstrations of formula application
Explaining interest calculations
Calculators, simple interest charts
KLB Mathematics Book Three Pg 98-99
2 2
Commercial Arithmetic
Simple interest
Compound interest
By the end of the lesson, the learner should be able to:
Calculate simple interest
Solve complex simple interest problems
Apply simple interest to real-world situations
Q/A on advanced simple interest concepts
Discussions on practical applications
Solving complex interest problems
Demonstrations of real-world scenarios
Explaining business applications
Calculators, real-world problem sets
Calculators, compound interest tables
KLB Mathematics Book Three Pg 98-101
2 3
Commercial Arithmetic
Compound interest
By the end of the lesson, the learner should be able to:
Calculate the compound interest
Solve advanced compound interest problems
Compare simple and compound interest
Q/A on advanced compounding scenarios
Discussions on investment comparisons
Solving complex compound problems
Demonstrations of comparison methods
Explaining investment decisions
Calculators, comparison worksheets
KLB Mathematics Book Three Pg 102-107
2 4
Commercial Arithmetic
Appreciation
By the end of the lesson, the learner should be able to:
Calculate the appreciation value of items
Apply appreciation concepts
Solve appreciation problems
Q/A on appreciation concepts
Discussions on asset value increases
Solving appreciation calculation problems
Demonstrations of value growth
Explaining appreciation applications
Calculators, appreciation examples
KLB Mathematics Book Three Pg 108
2 5
Commercial Arithmetic
Depreciation
Hire purchase
By the end of the lesson, the learner should be able to:
Calculate the depreciation value of items
Apply depreciation methods
Solve depreciation problems
Q/A on depreciation concepts and methods
Discussions on asset value decreases
Solving depreciation calculation problems
Demonstrations of depreciation methods
Explaining business depreciation
Calculators, depreciation charts
Calculators, hire purchase examples
KLB Mathematics Book Three Pg 109
2 6
Commercial Arithmetic
Hire purchase
By the end of the lesson, the learner should be able to:
Find the hire purchase
Solve complex hire purchase problems
Calculate total costs and interest charges
Q/A on advanced hire purchase scenarios
Discussions on complex payment structures
Solving challenging hire purchase problems
Demonstrations of cost analysis
Explaining consumer finance decisions
Calculators, complex hire purchase worksheets
KLB Mathematics Book Three Pg 110-112
2 7
Commercial Arithmetic
Income tax and P.A.Y.E
By the end of the lesson, the learner should be able to:
Calculate the income tax
Calculate the P.A.Y.E
Apply tax calculation methods
Q/A on tax system concepts
Discussions on income tax and P.A.Y.E systems
Solving tax calculation problems
Demonstrations of tax computation
Explaining taxation principles
Income tax tables, calculators
KLB Mathematics Book Three Pg 112-117
3 1
Circles: Chords and Tangents
Length of an arc
By the end of the lesson, the learner should be able to:
Calculate the length of an arc
Apply arc length formula
Understand arc-radius relationships
Q/A on circle properties and terminology
Discussions on arc measurement concepts
Solving basic arc length problems
Demonstrations of formula application
Explaining arc-angle relationships
Geometrical set, calculators
KLB Mathematics Book Three Pg 124-125
3 2
Circles: Chords and Tangents
Chords
By the end of the lesson, the learner should be able to:
Calculate the length of a chord
Apply chord properties and theorems
Understand chord-radius relationships
Q/A on chord definition and properties
Discussions on chord calculation methods
Solving basic chord problems
Demonstrations of geometric constructions
Explaining chord theorems
Geometrical set, calculators
KLB Mathematics Book Three Pg 126-128
3 3
Circles: Chords and Tangents
Parallel chords
By the end of the lesson, the learner should be able to:
Calculate the perpendicular bisector
Find the value of parallel chords
Apply parallel chord properties
Q/A on parallel chord concepts
Discussions on perpendicular bisector properties
Solving parallel chord problems
Demonstrations of construction techniques
Explaining geometric relationships
Geometrical set, calculators
KLB Mathematics Book Three Pg 129-131
3 4
Circles: Chords and Tangents
Equal chords
Intersecting chords
By the end of the lesson, the learner should be able to:
Find the length of equal chords
Apply equal chord theorems
Solve equal chord problems
Q/A on equal chord properties
Discussions on chord equality conditions
Solving equal chord problems
Demonstrations of proof techniques
Explaining theoretical foundations
Geometrical set, calculators
KLB Mathematics Book Three Pg 131-132
3 5
Circles: Chords and Tangents
Intersecting chords
By the end of the lesson, the learner should be able to:
Calculate the length of intersecting chords
Solve complex intersection problems
Apply advanced chord theorems
Q/A on advanced intersection scenarios
Discussions on complex chord relationships
Solving challenging intersection problems
Demonstrations of advanced techniques
Explaining sophisticated applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 135-139
3 6
Circles: Chords and Tangents
Chord properties
By the end of the lesson, the learner should be able to:
Solve comprehensive chord problems
Integrate all chord concepts
Apply chord knowledge systematically
Q/A on comprehensive chord understanding
Discussions on integrated problem-solving
Solving mixed chord problems
Demonstrations of systematic approaches
Explaining complete chord mastery
Geometrical set, calculators
KLB Mathematics Book Three Pg 126-139
3 7
Circles: Chords and Tangents
Tangent to a circle
By the end of the lesson, the learner should be able to:
Construct a tangent to a circle
Understand tangent properties
Apply tangent construction methods
Q/A on tangent definition and properties
Discussions on tangent construction
Solving basic tangent problems
Demonstrations of construction techniques
Explaining tangent characteristics
Geometrical set, calculators
KLB Mathematics Book Three Pg 139-140
4 1
Circles: Chords and Tangents
Properties of tangents to a circle from an external point
By the end of the lesson, the learner should be able to:
State the properties of tangents to a circle from an external point
Apply external tangent properties
Solve external tangent problems
Q/A on external tangent concepts
Discussions on tangent properties
Solving external tangent problems
Demonstrations of property applications
Explaining theoretical foundations
Geometrical set, calculators
KLB Mathematics Book Three Pg 142-144
4 2
Circles: Chords and Tangents
Tangent properties
By the end of the lesson, the learner should be able to:
Solve comprehensive tangent problems
Apply all tangent concepts
Integrate tangent knowledge systematically
Q/A on comprehensive tangent mastery
Discussions on integrated applications
Solving mixed tangent problems
Demonstrations of complete understanding
Explaining systematic problem-solving
Geometrical set, calculators
KLB Mathematics Book Three Pg 139-147
4 3
Circles: Chords and Tangents
Tangents to two circles
By the end of the lesson, the learner should be able to:
Calculate the tangents of direct common tangents
Find direct common tangent properties
Apply two-circle tangent concepts
Q/A on two-circle tangent concepts
Discussions on direct tangent properties
Solving direct tangent problems
Demonstrations of construction methods
Explaining geometric relationships
Geometrical set, calculators
KLB Mathematics Book Three Pg 148-149
4 4
Circles: Chords and Tangents
Tangents to two circles
Contact of circles
By the end of the lesson, the learner should be able to:
Calculate the tangents of transverse common tangents
Find transverse tangent properties
Compare direct and transverse tangents
Q/A on transverse tangent concepts
Discussions on tangent type differences
Solving transverse tangent problems
Demonstrations of comparison methods
Explaining tangent classifications
Geometrical set, calculators
KLB Mathematics Book Three Pg 150-151
4 5
Circles: Chords and Tangents
Contact of circles
By the end of the lesson, the learner should be able to:
Calculate the radii of contact circles
Understand external contact properties
Compare internal and external contact
Q/A on external contact concepts
Discussions on contact type differences
Solving external contact problems
Demonstrations of contact analysis
Explaining contact applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 153-154
4 6
Circles: Chords and Tangents
Circle contact
By the end of the lesson, the learner should be able to:
Solve problems involving chords, tangents and contact circles
Integrate all contact concepts
Apply comprehensive contact knowledge
Q/A on comprehensive contact understanding
Discussions on integrated problem-solving
Solving complex contact problems
Demonstrations of systematic approaches
Explaining complete contact mastery
Geometrical set, calculators
KLB Mathematics Book Three Pg 154-157
4 7
Circles: Chords and Tangents
Angle in alternate segment
By the end of the lesson, the learner should be able to:
Calculate the angles in alternate segments
Apply alternate segment theorem
Understand segment angle properties
Q/A on alternate segment concepts
Discussions on segment angle relationships
Solving basic segment problems
Demonstrations of theorem application
Explaining geometric proofs
Geometrical set, calculators
KLB Mathematics Book Three Pg 157-160
5 1
Circles: Chords and Tangents
Circumscribed circle
By the end of the lesson, the learner should be able to:
Construct circumscribed circles
Find circumscribed circle properties
Apply circumscription concepts
Q/A on circumscription concepts
Discussions on circumscribed circle construction
Solving circumscription problems
Demonstrations of construction techniques
Explaining circumscription applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 165
5 2
Circles: Chords and Tangents
Escribed circles
By the end of the lesson, the learner should be able to:
Construct escribed circles
Find escribed circle properties
Apply escription concepts
Q/A on escription concepts
Discussions on escribed circle construction
Solving escription problems
Demonstrations of construction methods
Explaining escription applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 165-166
5 3
Circles: Chords and Tangents
Centroid
Orthocenter
By the end of the lesson, the learner should be able to:
Construct centroid
Find centroid properties
Apply centroid concepts
Q/A on centroid definition and properties
Discussions on centroid construction
Solving centroid problems
Demonstrations of construction techniques
Explaining centroid applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 166
5 4
Circles: Chords and Tangents
Circle and triangle relationships
By the end of the lesson, the learner should be able to:
Solve comprehensive circle-triangle problems
Integrate all circle and triangle concepts
Apply advanced geometric relationships
Q/A on comprehensive geometric understanding
Discussions on integrated relationships
Solving complex geometric problems
Demonstrations of advanced applications
Explaining sophisticated geometric principles
Geometrical set, calculators
KLB Mathematics Book Three Pg 164-167
5 5
Matrices
Introduction and real-life applications
Order of a matrix and elements
Square matrices, row and column matrices
By the end of the lesson, the learner should be able to:
Define matrices and identify matrix applications
Recognize matrices in everyday contexts
Understand tabular data representation
Appreciate the importance of matrices
Q/A on tabular data in daily life
Discussions on school exam results tables
Analyzing bus timetables and price lists
Demonstrations using newspaper sports tables
Explaining matrix notation using grid patterns
Old newspapers with league tables, chalk and blackboard, exercise books
Chalk and blackboard, ruled exercise books, class register
Paper cutouts, chalk and blackboard, counters or bottle tops
KLB Mathematics Book Three Pg 168-169
5 6
Matrices
Addition of matrices
Subtraction of matrices
Combined addition and subtraction
By the end of the lesson, the learner should be able to:
Add matrices of the same order
Apply matrix addition rules correctly
Understand compatibility for addition
Solve matrix addition problems systematically
Q/A on matrix addition using number examples
Discussions on element-wise addition using counters
Solving basic addition using blackboard work
Demonstrations using physical counting objects
Explaining compatibility using size comparisons
Counters or stones, chalk and blackboard, exercise books
Chalk and blackboard, exercise books, number cards made from cardboard
Chalk and blackboard, exercise books, locally made operation cards
KLB Mathematics Book Three Pg 170-171
5 7
Matrices
Scalar multiplication
Introduction to matrix multiplication
By the end of the lesson, the learner should be able to:
Multiply matrices by scalar quantities
Apply scalar multiplication rules
Understand the effect of scalar multiplication
Solve scalar multiplication problems
Q/A on scalar multiplication using times tables
Discussions on scaling using multiplication concepts
Solving scalar problems using repeated addition
Demonstrations using groups of objects
Explaining scalar effects using enlargement concepts
Beans or stones for grouping, chalk and blackboard, exercise books
Chalk and blackboard, rulers for tracing, exercise books
KLB Mathematics Book Three Pg 174-175
6 1
Matrices
Matrix multiplication (2×2 matrices)
Matrix multiplication (larger matrices)
By the end of the lesson, the learner should be able to:
Multiply 2×2 matrices systematically
Apply correct multiplication procedures
Calculate matrix products accurately
Understand result matrix dimensions
Q/A on 2×2 matrix multiplication using simple numbers
Discussions on systematic calculation methods
Solving 2×2 problems using step-by-step approach
Demonstrations using organized blackboard layout
Explaining product formation using grid method
Chalk and blackboard, exercise books, homemade grid templates
Chalk and blackboard, large sheets of paper for working, exercise books
KLB Mathematics Book Three Pg 176-179
6 2
Matrices
Properties of matrix multiplication
By the end of the lesson, the learner should be able to:
Understand non-commutativity of matrix multiplication
Apply associative and distributive properties
Distinguish between pre and post multiplication
Solve problems involving multiplication properties
Q/A on multiplication properties using counterexamples
Discussions on order importance using practical examples
Solving property-based problems using verification
Demonstrations using concrete examples
Explaining distributive law using expansion
Chalk and blackboard, exercise books, cardboard for property cards
KLB Mathematics Book Three Pg 174-179
6 3
Matrices
Real-world matrix multiplication applications
By the end of the lesson, the learner should be able to:
Apply matrix multiplication to practical problems
Solve business and economic applications
Calculate costs, revenues, and quantities
Interpret matrix multiplication results
Q/A on practical applications using local business examples
Discussions on market problems using familiar contexts
Solving real-world problems using matrix methods
Demonstrations using shop keeper scenarios
Explaining result interpretation using meaningful contexts
Chalk and blackboard, local price lists, exercise books
KLB Mathematics Book Three Pg 176-179
6 4
Matrices
Identity matrix
Determinant of 2×2 matrices
By the end of the lesson, the learner should be able to:
Define and identify identity matrices
Understand identity matrix properties
Apply identity matrices in multiplication
Recognize the multiplicative identity role
Q/A on identity concepts using number 1 analogy
Discussions on multiplicative identity using examples
Solving identity problems using pattern recognition
Demonstrations using multiplication by 1 concept
Explaining diagonal properties using visual patterns
Chalk and blackboard, exercise books, pattern cards made from paper
Chalk and blackboard, exercise books, crossed sticks for demonstration
KLB Mathematics Book Three Pg 182-183
6-7

Games

7 2
Matrices
Inverse of 2×2 matrices - theory
By the end of the lesson, the learner should be able to:
Understand the concept of matrix inverse
Identify conditions for matrix invertibility
Apply the inverse formula for 2×2 matrices
Understand singular matrices
Q/A on inverse concepts using reciprocal analogy
Discussions on invertibility using determinant conditions
Solving basic inverse problems using formula
Demonstrations using step-by-step method
Explaining singular matrices using zero determinant
Chalk and blackboard, exercise books, fraction examples
KLB Mathematics Book Three Pg 183-185
7 3
Matrices
Inverse of 2×2 matrices - practice
By the end of the lesson, the learner should be able to:
Calculate inverses of 2×2 matrices systematically
Verify inverse calculations through multiplication
Apply inverse properties correctly
Solve complex inverse problems
Q/A on inverse calculation verification methods
Discussions on accuracy checking using multiplication
Solving advanced inverse problems using practice
Demonstrations using verification procedures
Explaining checking methods using examples
Chalk and blackboard, exercise books, scrap paper for verification
KLB Mathematics Book Three Pg 185-187
7 4
Matrices
Introduction to solving simultaneous equations
Solving 2×2 simultaneous equations using matrices
By the end of the lesson, the learner should be able to:
Understand matrix representation of simultaneous equations
Identify coefficient and constant matrices
Set up matrix equations correctly
Recognize the structure of linear systems
Q/A on equation representation using familiar equations
Discussions on coefficient identification using examples
Solving setup problems using systematic approach
Demonstrations using equation breakdown method
Explaining structure using organized layout
Chalk and blackboard, exercise books, equation examples from previous topics
Chalk and blackboard, exercise books, previous elimination method examples
KLB Mathematics Book Three Pg 188-189
7 5
Matrices
Advanced simultaneous equation problems
By the end of the lesson, the learner should be able to:
Solve complex simultaneous equation systems
Handle systems with no solution or infinite solutions
Interpret determinant values in solution context
Apply matrix methods to word problems
Q/A on complex systems using special cases
Discussions on solution types using geometric interpretation
Solving challenging problems using complete analysis
Demonstrations using classification methods
Explaining geometric meaning using line concepts
Chalk and blackboard, exercise books, graph paper if available
KLB Mathematics Book Three Pg 188-190
7 6
Matrices
Matrix applications in real-world problems
By the end of the lesson, the learner should be able to:
Apply matrix operations to practical scenarios
Solve business, engineering, and scientific problems
Model real situations using matrices
Interpret matrix solutions in context
Q/A on practical applications using local examples
Discussions on modeling using familiar situations
Solving comprehensive problems using matrix tools
Demonstrations using community-based scenarios
Explaining solution interpretation using meaningful contexts
Chalk and blackboard, local business examples, exercise books
KLB Mathematics Book Three Pg 168-190
7 7
Matrices
Transpose of matrices
By the end of the lesson, the learner should be able to:
Define and calculate matrix transpose
Understand transpose properties
Apply transpose operations correctly
Solve problems involving transpose
Q/A on transpose concepts using reflection ideas
Discussions on row-column interchange using visual methods
Solving transpose problems using systematic approach
Demonstrations using flip and rotate concepts
Explaining properties using symmetry ideas
Chalk and blackboard, exercise books, paper cutouts for demonstration
KLB Mathematics Book Three Pg 170-174
8 1
Matrices
Formulae and Variations
Matrix equation solving
Introduction to formulae
By the end of the lesson, the learner should be able to:
Solve matrix equations systematically
Find unknown matrices in equations
Apply inverse operations to solve equations
Verify matrix equation solutions
Q/A on equation solving using algebraic analogy
Discussions on unknown determination using systematic methods
Solving matrix equations using step-by-step approach
Demonstrations using organized solution procedures
Explaining verification using checking methods
Chalk and blackboard, exercise books, algebra reference examples
Chalk and blackboard, measuring tape or string, exercise books
KLB Mathematics Book Three Pg 183-190
8 2
Formulae and Variations
Subject of a formula - basic cases
By the end of the lesson, the learner should be able to:
Make simple variables the subject of formulae
Apply inverse operations to rearrange formulae
Understand the concept of subject change
Solve basic subject transformation problems
Q/A on inverse operations using number examples
Discussions on formula rearrangement using balance method
Solving basic subject change problems using step-by-step approach
Demonstrations using see-saw balance analogy
Explaining inverse operations using practical examples
Chalk and blackboard, simple balance (stones and stick), exercise books
KLB Mathematics Book Three Pg 191-193
8 3
Formulae and Variations
Subject of a formula - intermediate cases
By the end of the lesson, the learner should be able to:
Make complex variables the subject of formulae
Handle formulae with fractions and powers
Apply multiple inverse operations systematically
Solve intermediate difficulty problems
Q/A on complex rearrangement using systematic approach
Discussions on fraction handling using common denominators
Solving intermediate problems using organized methods
Demonstrations using step-by-step blackboard work
Explaining systematic approaches using flowcharts
Chalk and blackboard, fraction strips made from paper, exercise books
KLB Mathematics Book Three Pg 191-193
8 4
Formulae and Variations
Subject of a formula - advanced cases
Applications of formula manipulation
By the end of the lesson, the learner should be able to:
Make variables subject in complex formulae
Handle square roots and quadratic expressions
Apply advanced algebraic manipulation
Solve challenging subject transformation problems
Q/A on advanced manipulation using careful steps
Discussions on square root handling using examples
Solving complex problems using systematic approach
Demonstrations using detailed blackboard work
Explaining quadratic handling using factoring
Chalk and blackboard, squared paper patterns, exercise books
Chalk and blackboard, local measurement tools, exercise books
KLB Mathematics Book Three Pg 191-193
8 5
Formulae and Variations
Introduction to variation
By the end of the lesson, the learner should be able to:
Understand the concept of variation
Distinguish between variables and constants
Recognize variation in everyday situations
Identify different types of variation
Q/A on variable relationships using daily examples
Discussions on changing quantities in nature and commerce
Analyzing variation patterns using local market prices
Demonstrations using speed-time relationships
Explaining variation types using practical examples
Chalk and blackboard, local price lists from markets, exercise books
KLB Mathematics Book Three Pg 194-196
8 6
Formulae and Variations
Direct variation - introduction
By the end of the lesson, the learner should be able to:
Understand direct proportionality concepts
Recognize direct variation patterns
Use direct variation notation correctly
Calculate constants of proportionality
Q/A on direct relationships using simple examples
Discussions on proportional changes using market scenarios
Solving basic direct variation problems
Demonstrations using doubling and tripling examples
Explaining proportionality using ratio concepts
Chalk and blackboard, beans or stones for counting, exercise books
KLB Mathematics Book Three Pg 194-196
8 7
Sequences and Series
Introduction to sequences and finding terms
General term of sequences and applications
By the end of the lesson, the learner should be able to:
Define sequences and identify sequence patterns
Find next terms using established patterns
Recognize different types of sequence patterns
Apply pattern recognition systematically
Q/A on number patterns from daily life
Discussions on counting patterns using classroom arrangements
Solving pattern completion problems step-by-step
Demonstrations using bead or stone arrangements
Explaining sequence terminology and pattern continuation
Chalk and blackboard, stones or beans for patterns, exercise books
Chalk and blackboard, numbered cards made from paper, exercise books
KLB Mathematics Book Three Pg 207-208
9 1
Sequences and Series
Arithmetic sequences and nth term
By the end of the lesson, the learner should be able to:
Define arithmetic sequences and common differences
Calculate common differences correctly
Derive and apply the nth term formula
Solve problems using arithmetic sequence concepts
Q/A on arithmetic patterns using step-by-step examples
Discussions on constant difference patterns and formula derivation
Solving arithmetic sequence problems systematically
Demonstrations using equal-step progressions
Explaining formula structure using algebraic reasoning
Chalk and blackboard, measuring tape or string, exercise books
KLB Mathematics Book Three Pg 209-210
9 2
Sequences and Series
Arithmetic sequence applications
By the end of the lesson, the learner should be able to:
Solve complex arithmetic sequence problems
Apply arithmetic sequences to real-world problems
Handle word problems involving arithmetic sequences
Model practical situations using arithmetic progressions
Q/A on practical applications using local business examples
Discussions on salary progression and savings plans
Solving real-world problems using sequence methods
Demonstrations using employment and finance scenarios
Explaining practical interpretation using meaningful contexts
Chalk and blackboard, local employment/savings examples, exercise books
KLB Mathematics Book Three Pg 209-210
9 3
Sequences and Series
Geometric sequences and nth term
Geometric sequence applications
By the end of the lesson, the learner should be able to:
Define geometric sequences and common ratios
Calculate common ratios correctly
Derive and apply the geometric nth term formula
Understand exponential growth patterns
Q/A on geometric patterns using multiplication examples
Discussions on ratio-based progressions and formula derivation
Solving geometric sequence problems systematically
Demonstrations using doubling and scaling examples
Explaining exponential structure using practical examples
Chalk and blackboard, objects for doubling demonstrations, exercise books
Chalk and blackboard, population/growth data examples, exercise books
KLB Mathematics Book Three Pg 211-213
9 4
Sequences and Series
Arithmetic series and sum formula
By the end of the lesson, the learner should be able to:
Define arithmetic series as sums of sequences
Derive the sum formula for arithmetic series
Apply the arithmetic series formula systematically
Calculate sums efficiently using the formula
Q/A on series concepts using summation examples
Discussions on sequence-to-series relationships and formula derivation
Solving arithmetic series problems using step-by-step approach
Demonstrations using cumulative sum examples
Explaining derivation logic using algebraic reasoning
Chalk and blackboard, counting materials for summation, exercise books
KLB Mathematics Book Three Pg 214-215
9 5
Sequences and Series
Geometric series and applications
By the end of the lesson, the learner should be able to:
Define geometric series and understand convergence
Derive and apply geometric series formulas
Handle finite and infinite geometric series
Apply geometric series to practical situations
Q/A on geometric series concepts using multiplication examples
Discussions on convergence and formula applications
Solving geometric series problems including infinite cases
Demonstrations using geometric sum patterns
Explaining convergence using practical examples
Chalk and blackboard, convergence demonstration materials, exercise books
KLB Mathematics Book Three Pg 216-219
9 6
Sequences and Series
Mixed problems and advanced applications
Sequences in nature and technology
By the end of the lesson, the learner should be able to:
Combine arithmetic and geometric concepts
Solve complex mixed sequence and series problems
Apply appropriate methods for different types
Model real-world situations using mathematical sequences
Q/A on problem type identification using systematic analysis
Discussions on method selection and comprehensive applications
Solving mixed problems using appropriate techniques
Demonstrations using interdisciplinary scenarios
Explaining method choice using logical reasoning
Chalk and blackboard, mixed problem collections, exercise books
Chalk and blackboard, natural and technology examples, exercise books
KLB Mathematics Book Three Pg 207-219
9-10

Midterm break

10 4
Binomial Expansion
Binomial expansions up to power four
By the end of the lesson, the learner should be able to:
Expand binomial function up to power four
Apply systematic multiplication methods
Recognize coefficient patterns in expansions
Use multiplication to expand binomial expressions
Q/A on algebraic multiplication using familiar expressions
Discussions on systematic expansion using step-by-step methods
Solving basic binomial multiplication problems
Demonstrations using area models and rectangular arrangements
Explaining pattern recognition using organized layouts
Chalk and blackboard, rectangular cutouts from paper, exercise books
KLB Mathematics Book Three Pg 256
10 5
Binomial Expansion
Binomial expansions up to power four (continued)
By the end of the lesson, the learner should be able to:
Expand binomial function up to power four
Handle increasingly complex coefficient patterns
Apply systematic expansion techniques efficiently
Verify expansions using substitution methods
Q/A on power expansion using multiplication techniques
Discussions on coefficient identification using pattern analysis
Solving expansion problems using systematic approaches
Demonstrations using geometric representations
Explaining verification methods using numerical substitution
Chalk and blackboard, squared paper for geometric models, exercise books
KLB Mathematics Book Three Pg 256
10 6
Binomial Expansion
Pascal's triangle
By the end of the lesson, the learner should be able to:
Use Pascal's triangle
Construct Pascal's triangle systematically
Apply triangle coefficients for binomial expansions
Recognize number patterns in the triangle
Q/A on triangle construction using addition patterns
Discussions on coefficient relationships using triangle analysis
Solving triangle construction and application problems
Demonstrations using visual triangle building
Explaining pattern connections using systematic observation
Chalk and blackboard, triangular patterns drawn/cut from paper, exercise books
KLB Mathematics Book Three Pg 256-257
10 7
Binomial Expansion
Pascal's triangle applications
Pascal's triangle (continued)
By the end of the lesson, the learner should be able to:
Use Pascal's triangle
Apply Pascal's triangle to binomial expansions efficiently
Use triangle coefficients for various powers
Solve expansion problems using triangle methods
Q/A on triangle application using coefficient identification
Discussions on efficient expansion using triangle methods
Solving expansion problems using Pascal's triangle
Demonstrations using triangle-guided calculations
Explaining efficiency benefits using comparative methods
Chalk and blackboard, Pascal's triangle reference charts, exercise books
Chalk and blackboard, advanced triangle patterns, exercise books
KLB Mathematics Book Three Pg 257-258
11 1
Binomial Expansion
Pascal's triangle advanced
By the end of the lesson, the learner should be able to:
Use Pascal's triangle
Apply general binomial theorem concepts
Understand combination notation in expansions
Use general term formula applications
Q/A on general formula understanding using pattern analysis
Discussions on combination notation using counting principles
Solving general term problems using formula application
Demonstrations using systematic formula usage
Explaining general principles using algebraic reasoning
Chalk and blackboard, combination calculation aids, exercise books
KLB Mathematics Book Three Pg 258-259
11 2
Binomial Expansion
Applications to numerical cases
By the end of the lesson, the learner should be able to:
Use binomial expansion to solve numerical problems
Apply expansions for numerical approximations
Calculate values using binomial methods
Understand practical applications of expansions
Q/A on numerical applications using approximation techniques
Discussions on calculation shortcuts using expansion methods
Solving numerical problems using binomial approaches
Demonstrations using practical calculation scenarios
Explaining approximation benefits using real examples
Chalk and blackboard, simple calculation aids, exercise books
KLB Mathematics Book Three Pg 259-260
11 3
Binomial Expansion
Probability
Applications to numerical cases (continued)
Introduction
By the end of the lesson, the learner should be able to:
Use binomial expansion to solve numerical problems
Apply binomial methods to complex calculations
Handle decimal approximations using expansions
Solve practical numerical problems
Q/A on advanced numerical applications using complex scenarios
Discussions on decimal approximation using expansion techniques
Solving challenging numerical problems using systematic methods
Demonstrations using detailed calculation procedures
Explaining practical relevance using real-world examples
Chalk and blackboard, advanced calculation examples, exercise books
Chalk and blackboard, coins, dice made from cardboard, exercise books
KLB Mathematics Book Three Pg 259-260
11 4
Probability
Experimental Probability
By the end of the lesson, the learner should be able to:
Calculate the experimental probability
Conduct probability experiments systematically
Record and analyze experimental data
Compare experimental results with expectations
Q/A on frequency counting using repeated experiments
Discussions on trial repetition and result recording
Solving experimental probability problems using data collection
Demonstrations using coin toss and dice roll experiments
Explaining frequency ratio calculations using practical examples
Chalk and blackboard, coins, cardboard dice, tally charts, exercise books
KLB Mathematics Book Three Pg 262-264
11 5
Probability
Experimental Probability applications
By the end of the lesson, the learner should be able to:
Calculate the experimental probability
Apply experimental methods to various scenarios
Handle large sample experiments
Analyze experimental probability patterns
Q/A on advanced experimental techniques using extended trials
Discussions on sample size effects using comparative data
Solving complex experimental problems using systematic methods
Demonstrations using extended experimental procedures
Explaining pattern analysis using accumulated data
Chalk and blackboard, extended experimental materials, data recording sheets, exercise books
KLB Mathematics Book Three Pg 262-264
11 6
Probability
Range of Probability Measure
Probability Space
By the end of the lesson, the learner should be able to:
Calculate the range of probability measure
Express probabilities on scale from 0 to 1
Convert between fractions, decimals, and percentages
Interpret probability values correctly
Q/A on probability scale using number line representations
Discussions on probability conversion between forms
Solving probability scale problems using systematic methods
Demonstrations using probability line and scale examples
Explaining scale interpretation using practical scenarios
Chalk and blackboard, number line drawings, probability scale charts, exercise books
Chalk and blackboard, playing cards (locally made), spinners from cardboard, exercise books
KLB Mathematics Book Three Pg 265-266
11 7
Probability
Theoretical Probability
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Apply mathematical reasoning to find probabilities
Use equally likely outcome assumptions
Calculate theoretical probabilities systematically
Q/A on theoretical calculation using mathematical principles
Discussions on equally likely assumptions and calculations
Solving theoretical problems using systematic approaches
Demonstrations using fair dice and unbiased coin examples
Explaining mathematical probability using logical reasoning
Chalk and blackboard, fair dice and coins, probability calculation aids, exercise books
KLB Mathematics Book Three Pg 266-268
12 1
Probability
Theoretical Probability advanced
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Apply theoretical probability to complex problems
Handle multiple outcome scenarios
Solve advanced theoretical problems
Q/A on advanced theoretical applications using complex scenarios
Discussions on multiple outcome analysis using systematic methods
Solving challenging theoretical problems using organized approaches
Demonstrations using complex probability setups
Explaining advanced theoretical concepts using detailed reasoning
Chalk and blackboard, complex probability materials, advanced calculation aids, exercise books
KLB Mathematics Book Three Pg 268-270
12 2
Probability
Theoretical Probability applications
Combined Events
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Apply theoretical concepts to real situations
Solve practical probability problems
Interpret results in meaningful contexts
Q/A on practical probability using local examples
Discussions on real-world applications using community scenarios
Solving application problems using theoretical methods
Demonstrations using local games and practical situations
Explaining practical interpretation using meaningful contexts
Chalk and blackboard, local game examples, practical scenario materials, exercise books
Chalk and blackboard, playing cards, multiple dice, Venn diagram drawings, exercise books
KLB Mathematics Book Three Pg 268-270
12 3
Probability
Combined Events OR probability
By the end of the lesson, the learner should be able to:
Find the probability of a combined events
Apply addition rule for OR events
Calculate "A or B" probabilities
Handle mutually exclusive events
Q/A on addition rule application using systematic methods
Discussions on mutually exclusive identification and calculation
Solving OR probability problems using organized approaches
Demonstrations using card selection and event combination
Explaining addition rule logic using Venn diagrams
Chalk and blackboard, Venn diagram materials, card examples, exercise books
KLB Mathematics Book Three Pg 272-274
12 4
Probability
Independent Events
By the end of the lesson, the learner should be able to:
Find the probability of independent events
Apply multiplication rule for independent events
Calculate "A and B" probabilities
Understand independence concepts
Q/A on multiplication rule using independent event examples
Discussions on independence identification and verification
Solving AND probability problems using systematic calculation
Demonstrations using multiple coin tosses and dice combinations
Explaining multiplication rule using logical reasoning
Chalk and blackboard, multiple coins and dice, independence demonstration materials, exercise books
KLB Mathematics Book Three Pg 274-275
12 5
Probability
Independent Events advanced
Independent Events applications
By the end of the lesson, the learner should be able to:
Find the probability of independent events
Distinguish between independent and dependent events
Apply conditional probability concepts
Handle complex independence scenarios
Q/A on independence verification using mathematical methods
Discussions on dependence concepts using card drawing examples
Solving dependent and independent event problems using systematic approaches
Demonstrations using replacement and non-replacement scenarios
Explaining conditional probability using practical examples
Chalk and blackboard, playing cards for replacement scenarios, multiple experimental setups, exercise books
Chalk and blackboard, complex experimental materials, advanced calculation aids, exercise books
KLB Mathematics Book Three Pg 276-278
12 6
Probability
Tree Diagrams
By the end of the lesson, the learner should be able to:
Draw tree diagrams to show the probability space
Construct tree diagrams systematically
Represent sequential events using trees
Apply tree diagram methods
Q/A on tree construction using step-by-step methods
Discussions on sequential event representation
Solving basic tree diagram problems using systematic drawing
Demonstrations using branching examples and visual organization
Explaining tree structure using logical branching principles
Chalk and blackboard, tree diagram templates, branching materials, exercise books
KLB Mathematics Book Three Pg 282
12 7
Probability
Tree Diagrams advanced
By the end of the lesson, the learner should be able to:
Use tree diagrams to find probability
Apply trees to multi-stage problems
Handle complex sequential events
Calculate final probabilities using trees
Q/A on complex tree application using multi-stage examples
Discussions on replacement scenario handling
Solving complex tree problems using systematic calculation
Demonstrations using detailed tree constructions
Explaining systematic probability calculation using tree methods
Chalk and blackboard, complex tree examples, detailed calculation aids, exercise books
KLB Mathematics Book Three Pg 283-285

Your Name Comes Here


Download

Feedback