If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 | 2 |
CHEMICAL FAMILIES
|
Chemical properties of alkaline earth metals.
Reaction of alkaline earth metals with oxygen.
|
By the end of the
lesson, the learner
should be able to:
To describe reaction of alkaline earth metals with oxygen |
Q/A: Review reactions of Mg, Ca, with oxygen.
The corresponding word and then chemical equations are then written and their correctness verified by the teacher. |
text book
|
K.L.B. BOOK IIP. 38
|
|
1 | 3-4 |
CHEMICAL FAMILIES
|
Chemical properties of alkaline earth metals.
Reaction of alkaline earth metals with water.
|
By the end of the
lesson, the learner
should be able to:
To describe reaction of alkaline earth metals with water. |
Q/A: Review reaction of metals with water.
Writing down word and balanced chemical equations for the reactions. Deduce and discuss the order of reactivity down the group. |
Some alkaline earth metals.
|
K.L.B. BOOK IIP. 39
|
|
2 | 1 |
CHEMICAL FAMILIES
|
Reaction of alkaline earth metals with chlorine gas.
|
By the end of the
lesson, the learner
should be able to:
To write balanced equations for reaction of alkaline earth metals with chlorine gas. |
Teacher demonstration- Reaction of sodium with chlorine in a fume chamber.
Q/A: Students to predict a similar reaction between potassium and chlorine. Word and balanced chemical equations for various reactions. Supervised practice. |
Sodium, chlorine.
|
K.L.B. BOOK II P. 41
|
|
2 | 2 |
CHEMICAL FAMILIES
|
Reaction of alkaline earth metals with dilute acids.
|
By the end of the
lesson, the learner
should be able to:
To write balanced equations for reactions of alkaline earth metals with dilute acids. |
Changing word to chemical equations.
Supervised practice. |
revision book
|
K.L.B. BOOK II PP. 43
|
|
2 | 3-4 |
CHEMICAL FAMILIES
|
Chemical formulae of alkaline earth metals.
|
By the end of the
lesson, the learner
should be able to:
Write chemical formulae for compounds of alkaline earth metals. Explain formation of hydroxides, oxides and chlorides of alkaline earth metals. |
Exercise: Completing a table of hydroxides, oxides and chlorides of alkaline earth metals.
Discuss combination of ions of alkaline earth metals with anions. |
text book
|
K.L.B. BOOK II PP. 45-47
|
|
3 | 1 |
CHEMICAL FAMILIES
|
Uses of some alkaline earth metals and their compounds.
Halogens. Physical properties of halogens. |
By the end of the
lesson, the learner
should be able to:
State uses of alkaline earth metals. |
Descriptive approach: Teacher elucidates uses of alkaline earth metals.
|
text book
Iodine crystals, electrical wire, a bulb. |
K.L.B. BOOK II PP. 45-47
|
|
3 | 2 |
CHEMICAL FAMILIES
|
Comparative physical properties of halogens.
|
By the end of the
lesson, the learner
should be able to:
To state and explain the trends in physical properties of halogens. |
Examine a comparative table of physical properties of halogens.
Discuss the deductions made from the table. |
text book
|
K.L.B. BOOK II P. 47
|
|
3 | 3-4 |
CHEMICAL FAMILIES
|
Chemical properties of halogens.
Equations of reaction of halogens with metals. |
By the end of the
lesson, the learner
should be able to:
To describe laboratory preparation of chlorine gas. To describe reaction of halogens with metals. To write balanced chemical equations of reactions involving halogens. |
Teacher demonstration: - preparation of chlorine gas.
Reaction of chlorine and iron wool. Reaction of bromine and iron wool. Reaction of iodine and iron wool. Observe the rate of these reactions; hence deduce order of their reactivity of halogens. Re-write word equations as chemical equations then balance them. Supervised practice. |
Chlorine, iron wool, bromine.
text book |
K.L.B. BOOK IIPP. 48-50
K.L.B. BOOK II P. 50 |
|
4 | 1 |
CHEMICAL FAMILIES
|
Reaction of halogens with water.
|
By the end of the
lesson, the learner
should be able to:
To describe reaction of halogens with water and the results obtained. |
Bubbling chlorine gas through water.
Carry out litmus test for the water. Explain the observations. |
Chlorine gas, litmus papers.
|
K.L.B. BOOK II P. 51
|
|
4 | 2 |
CHEMICAL FAMILIES
|
Some uses of halogens and their compounds.
|
By the end of the
lesson, the learner
should be able to:
To state uses of halogens and their compounds. |
Teacher elucidates uses of halogens and their compounds.
|
text book
|
K.L.B. BOOK II pp 52
|
|
4 | 3-4 |
CHEMICAL FAMILIES
STRUCTURE & BONDING |
Noble Gases.
Comparative physical properties of noble gases.
Uses of noble gases. Chemical bonds. Ionic bond. Ionic bond representation. |
By the end of the
lesson, the learner
should be able to:
To describe physical properties of noble gases. To explain physical properties of noble gases. Describe role of valence electrons in determining chemical bonding. Explain formation of ionic bonding. |
Make A comparative analysis of tabulated physical properties of noble gases.
Q/A: Review valence electrons of atoms of elements in groups I, II, III, VII and VIII. Q/A: Review group I and group VII elements. Discuss formation of ionic bond. |
text book
text book Chart- dot and cross diagrams. Models for bonding. |
K.L.B. BOOK IIPP. 52-53
K.L.B. BOOK IIP54 PP 57-58 |
|
5 | 1 |
STRUCTURE & BONDING
|
Grant ionic structures.
Physical properties of ionic compounds. |
By the end of the
lesson, the learner
should be able to:
Describe the crystalline ionic compound. Give examples of ionic substances. |
Discuss the group ionic structures of NaCl.
Teacher gives examples of other ionic substances: KNO3, potassium bromide, Ca (NO3)2, sodium iodide. |
Giant sodium chloride model.
text book |
K.L.B. BOOK II PP 56-58
|
|
5 | 2 |
STRUCTURE & BONDING
|
Covalent bond.
|
By the end of the
lesson, the learner
should be able to:
Explain the formation of covalent bond Use dot and cross diagrams to represent covalent bond. |
Exposition: Shared pair of electrons in a hydrogen molecule, H2O, NH3, Cl2, and CO2.
Drawing of dot-and-cross diagrams of covalent bonds. |
text book
|
K.L.B. BOOK II PP 60-63
|
|
5 | 3-4 |
STRUCTURE & BONDING
|
Co-ordinate bond.
Molecular structure. Trend in physical properties of molecular structures. Giant atomic structure in diamond. |
By the end of the
lesson, the learner
should be able to:
To describe the co-ordinate bond To represent co-ordinate bond diagrammatically. To describe van- der -waals forces. To explain the trend in physical properties of molecular structures. |
Exposition- teacher explains the nature of co-ordinate bond.
Students represent co-ordinate bond diagrammatically. Discuss comparative physical properties of substances. exhibiting molecular structure. Explain variation in the physical properties. |
text book
Sugar, naphthalene, iodine rhombic sulphur. Diagrams in textbooks. |
K.L.B. BOOK II P 65
K.L.B. BOOK IIP 65 |
|
6 | 1 |
STRUCTURE & BONDING
|
Giant atomic structure in graphite.
|
By the end of the
lesson, the learner
should be able to:
To describe giant atomic structure in graphite. To state uses of graphite. |
Diagrammatic representation of graphite.
Discuss uses of graphite. |
Diagrams in textbooks.
|
K.L.B. BOOK II pp 69
|
|
6 | 2 |
STRUCTURE & BONDING
|
Metallic bond.
Uses of some metals.
|
By the end of the
lesson, the learner
should be able to:
To describe mutual electronic forces between electrons and nuclei. To describe metallic bond. To compare physical properties of metals. To state uses of some metals. |
Discussion:
Detailed analysis of comparative physical properties of metals and their uses. Probing questions & brief explanations. |
text book
|
K.L.B. BOOK IIP 70
|
|
6 | 3-4 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
|
Physical properties of elements in periods.
Physical properties of elements in period 3. Chemical properties of elements in period 3. |
By the end of the
lesson, the learner
should be able to:
To compare electrical conductivity of elements in period 3 To compare reactions of elements in period 3 with oxygen. |
Group experiments- Construct electrical circuits incorporating a magnesium ribbon, then aluminum foil, then sulphur in turns.
The brightness of the bulb is noted in each case. Discuss the observations in terms of delocalised electrons. Q/A: Products of reactions of Na, Mg, Al, P, & S with oxygen. Discuss the trend in their reactivity; identify basic and acidic oxides. Exercise ? balanced chemical equations for the above reactions. |
The periodic table.
|
K.L.B. BOOK IIP. 76
K.L.B. BOOK II PP. 79-80 |
|
7 | 1 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
|
Chemical properties of elements in the third period.
Oxides of period 3 elements. |
By the end of the
lesson, the learner
should be able to:
To compare reactions of elements in period 3 with water |
Q/A: Review reaction of sodium, Mg, chlorine, with water.
Infer that sodium is most reactive metal; non-metals do not react with water. |
The periodic table.
|
K.L.B. BOOK II PP. 80-81
|
|
7 | 2 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
SALTS |
Chlorides of period 3 elements.
Types of salts. |
By the end of the
lesson, the learner
should be able to:
To explain chemical behavior of their chlorides. To describe hydrolysis reaction. |
Comparative analysis, discussion and explanation.
|
The periodic table.
text book |
K.L.B. BOOK II PP. 77-78
|
|
7 | 3-4 |
SALTS
|
Solubility of salts in water.
Solubility of bases in water. |
By the end of the
lesson, the learner
should be able to:
To test solubility of various salts in cold water/warm water. To test solubility of various bases in water. To carry out litmus test on the resulting solutions. |
Class experiments- Dissolve salts in 5 cc of water.
Record the solubility in a table, Analyse the results. Class experiments- Dissolve salts in 5cc of water. Record the solubility in a table, Carry out litmus tests. Discuss the results. |
Sulphates, chlorides, nitrates, carbonates of various metals.
Oxides, hydroxides, of various metals, litmus papers. |
K.L.B. BOOK II PP. 92-93
K.L.B. BOOK IIPP. 94-95 |
|
8 | 1 |
SALTS
|
Methods of preparing various salts.
|
By the end of the
lesson, the learner
should be able to:
To describe various methods of preparing some salts. |
Experimental and descriptive treatments of preparation of salts e.g. ZnSO4, CuSO4, NaCl and Pb(NO3)2.
|
CuO, H2SO4, HCl, NaOH, PbCO3, dil HNO3.
|
K.L.B. BOOK II pp96
|
|
8 | 2 |
SALTS
|
Direct synthesis of a salts.
|
By the end of the
lesson, the learner
should be able to:
To describe direct synthesis of a salt. To write balanced equations for the reactions. |
Group experiments- preparation of iron (II) sulphide by direct synthesis.
Give other examples of salts prepared by direct synthesis. Students write down corresponding balanced equations. |
Iron,
Sulphur |
K.L.B. BOOK II P. 104
|
|
8 | 3-4 |
SALTS
|
Ionic equations.
Effects of heat on carbonates. Effects of heat on nitrates. |
By the end of the
lesson, the learner
should be able to:
To identify spectator ions in double decomposition reactions. To write ionic equations correctly. To state effects of heat on carbonates. To predict products resulting from heating metal carbonates. |
Q/A: Ions present in given reactants.
Deduce the products of double decomposition reactions. Give examples of equations. Supervised practice. Group experiments- To investigate effects of heat on Na2CO3, K2CO3, CaCO3, ZnCO3, PbCO3, e.t.c. Observe various colour changes before, during and after heating. Write equations for the reactions. |
PbNO3, MgSO4 solutions.
Various carbonates. Common metal nitrates. |
K.L.B. BOOK II
K.L.B. BOOK II PP. 108-109 |
|
9 |
Mid term break |
|||||||
10 | 1 |
SALTS
|
Effects of heat on sulphates.
Hygroscopy, Deliquescence and Efflorescence. |
By the end of the
lesson, the learner
should be able to:
To state effects of heat on sulphates. To predict products results from heating metal sulphates. |
Group experiments- To investigate effects of heat on various sulphates.
Observe various colour changes before, during and after heating. Write equations for the reactions. |
Common sulphates.
|
K.L.B. BOOK II P. 113
|
|
10 | 2 |
SALTS
|
Uses of salts.
|
By the end of the
lesson, the learner
should be able to:
To state uses of salts |
Teacher elucidates uses of salts.
|
|
K.L.B. BOOK II P. 114
|
|
10 | 3-4 |
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
CARBON AND SOME OF ITS COMPOUNDS. |
Electrical conductivity.
Allotropy. Physical and chemical properties of diamond, graphite and amorphous carbon Burning carbon and oxygen. |
By the end of the
lesson, the learner
should be able to:
To test for electrical conductivities of substances. Describe physical and chemical properties of diamond, graphite and amorphous carbon. State uses of carbon allotropes. |
Group experiments- to identify conductors and non-conductors.
Explain the difference in (non) conductivities. Discuss physical and chemical properties of diamond, graphite and amorphous carbon. Explain the Physical and chemical properties of diamond, graphite and amorphous carbon. Discuss uses of carbon allotropes. |
Various solids, bulb, battery, & wires.
text book Charcoal, graphite. Carbon, limewater, tube, limewater stand& Bunsen burner. |
K.L.B. BOOK II PP. 118-119
K.L.B. BOOK II pp 134 |
|
11 | 1 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Reduction properties of carbon.
Reaction of carbon with acids. Preparation of CO2. |
By the end of the
lesson, the learner
should be able to:
Describe reduction properties of carbon. Show reduction properties of carbon. |
Teacher demonstration ? Burn strongly a mixture of carbon and CuO on a bottle top.
Observe colour changes and give underlying explanation |
CuO, pounded charcoal, Bunsen burner& bottle top
Conc. HNO3, limewater. |
K.L.B. BOOK II P.126
|
|
11 | 2 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Properties of CO2.
|
By the end of the
lesson, the learner
should be able to:
Describe properties of CO2 |
Simple experiments to determine properties of CO2.
Discuss the observations. |
Lime water,
Magnesium ribbon, Universal indicator, lit candle. |
K.L.B. BOOK II PP.138-139
|
|
11 | 3-4 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Chemical equations for reactions involving CO2.
Uses of CO2. Carbon monoxide lab preparation. |
By the end of the
lesson, the learner
should be able to:
Write balanced CO2. State uses of CO2 |
Give examples of reactions. Write corresponding balanced chemical equations.
Discuss briefly the uses of CO2. |
text book
|
K.L.B. BOOK II PP.139-140
K.L.B. BOOK II PP.140-1 |
|
12 | 1 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Chemical properties of carbon monoxide.
Carbonates and hydrogen carbonates. |
By the end of the
lesson, the learner
should be able to:
To describe chemical properties of carbon monoxide. |
Description of properties of carbon monoxide.
Discussion and writing of chemical equations. |
text book
|
K.L.B. BOOK II PP. 144-145
|
|
12 | 2 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Heating carbonates and hydrogen carbonates.
Extraction of sodium carbonate from trona. |
By the end of the
lesson, the learner
should be able to:
To write equations for reaction of carbonates and hydrogen carbonates on heating. |
Discuss the above observations.
Write corresponding balanced equations. |
text book
|
K.L.B. BOOK II PP.150-151
|
|
12 | 3-4 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Solvay process of preparing sodium carbonate.
Importance of carbon in nature. & its effects on the environment. |
By the end of the
lesson, the learner
should be able to:
To draw schematic diagram for extraction of sodium carbonates. To discuss: - Importance of carbon in nature. & Effects of carbon on the environment. |
Discuss each step of the process.
Write relevant equations. Discuss the carbon cycle and processes that increase/ reduce amount of CO2 in the air. Uses of CO2 in soft drinks and fire extinguishers. |
text book, chart
|
K.L.B. BOOK II
K.L.B. BOOK II PP.157-158 |
Your Name Comes Here