If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1 |
Indices and Logarithms
|
Standard form
|
By the end of the
lesson, the learner
should be able to:
Write standard form of numbers |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 15 discovering secondary pg 13 |
|
2 | 2 |
Indices and Logarithms
|
Powers of 10 and common logarithms
Logarithms of positive numbers less than 1 Antilogarithms |
By the end of the
lesson, the learner
should be able to:
Read from the table logarithms of numbers |
|
Sets
Books Videos Charts Apparatus |
KLB Mathematics
Book Two Pg 16-18 discovering secondary pg 15 |
|
2 | 3 |
Indices and Logarithms
|
Applications of logarithms
Roots Roots |
By the end of the
lesson, the learner
should be able to:
Use multiplication and division law of indices to find logarithms |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 20-22 discovering secondary pg 18 |
|
2 | 4 |
Gradient and equations of straight lines
|
Gradient
Equation of a line |
By the end of the
lesson, the learner
should be able to:
Find gradient of straight line |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 27-29 discovering secondary pg23 |
|
2 | 5 |
Gradient and equations of straight lines
|
Linear equation y=mx+c
The y-intercept The graph of a straight line |
By the end of the
lesson, the learner
should be able to:
Find linear equations in the form y=mx+c |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts Sets |
KLB Mathematics
Book Two Pg 34-36 discovering secondary pg 27 |
|
2 | 6 |
Gradient and equations of straight lines
Reflection and congruence |
Perpendicular lines
Parallel lines Symmetry |
By the end of the
lesson, the learner
should be able to:
Determine the equation of perpendicular lines |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 41-42 discovering secondary pg 30 |
|
3 | 1 |
Reflection and congruence
|
Reflection
Some general deductions using reflection Some general deductions using reflection |
By the end of the
lesson, the learner
should be able to:
Draw an image under reflection |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts Sets |
KLB Mathematics
Book Two Pg 48-50 Discovering secondary pg 33 |
|
3 | 2 |
Reflection and congruence
|
Congruence
Congruent triangles Congruent triangles |
By the end of the
lesson, the learner
should be able to:
Determine shapes that are congruent |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 61-62 Discovering secondary pg 39 |
|
3 |
Opener exams |
|||||||
4 | 1 |
Reflection and congruence
Rotation Rotation |
The ambiguous case
Introduction Centre of rotation |
By the end of the
lesson, the learner
should be able to:
Determine the two angles that are congruent |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 67 Discovering secondary pg 41 |
|
4 | 2 |
Rotation
|
Angle of rotation
Rotation in the Cartesian plane Rotation in the Cartesian plane |
By the end of the
lesson, the learner
should be able to:
Determine the angle of rotation |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 74-75 Discovering secondary pg 46 |
|
4 | 3 |
Rotation
|
Rotation in the Cartesian plane
Rotational symmetry of plane figures Rotational symmetry of solids |
By the end of the
lesson, the learner
should be able to:
Rotate objects about the +180 |
Defining
Discussions Solving problem Explaining |
Sets
Books Videos Charts Apparatus |
KLB Mathematics
Book Two Pg 77 Discovering secondary pg 47 |
|
4 | 4 |
Rotation
Trigonometry Trigonometry |
Rotation and congruence
Pythagoras Theorem Solutions of problems Using Pythagoras Theorem |
By the end of the
lesson, the learner
should be able to:
Determine the relationship between rotation and congruence |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts Chalkboard Charts Illustrating derived theorem Charts illustrating Pythagoras theorem |
KLB Mathematics
Book Two Pg 84 Discovering secondary pg 50 |
|
4 | 5 |
Trigonometry
|
Application to real life Situation
Trigonometry Tangent, sine and cosines Trigonometric Table |
By the end of the
lesson, the learner
should be able to:
Use the formula A = ?s(s-a)(s-b)(s-c) to solve problems in real life |
Solving problems in real life using the formula A = ?s(s-a)(s-b)(s-c)
|
Mathematical table
Charts illustrating tangent, sine and cosine |
KLB BK2 Pg 159 Discovering secondary pg 67
|
|
4 | 6 |
Trigonometry
|
Angles and sides of a right angled triangle
Establishing Relationship of sine and cosine of complimentary angles Sines and cosines of Complimentary angles |
By the end of the
lesson, the learner
should be able to:
Use the sine, cosine and tangent in calculating the length of a right angled triangle and also finding the angle given two sides and unknown angle The length can be obtained if one side is given and an angle |
Using mathematical tables Finding the length using sine ratio Finding the length using Cosine and tangent ratio Finding the angle using Sine, cosine and tangent
|
Mathematical table Charts Chalkboard
Chalkboards Chalkboard Charts illustrating the relationship of sines and cosines of complimentary angles |
KLB BK2 Pg 125, 139, 140 Discovering secondary pg
|
|
5 | 1 |
Trigonometry
|
Relationship between tangent, sine and cosine
Trigonometric ratios of special angles 30, 45, 60 and 90 Application of Trigonometric ratios in solving problems |
By the end of the
lesson, the learner
should be able to:
Relate the three trigonometric ratios, the sine, cosine and tangent |
Relating the three trigonometric ratios
|
Charts showing the three related trigonometric ratio
Charts showing isosceles right angled triangle Charts illustrating Equilateral triangle Chalkboard |
KLB BK2 Pg 145
|
|
5 | 2 |
Trigonometry
|
Logarithms of Sines
Logarithms of cosines And tangents Reading tables of logarithms of sines, cosines and tangents |
By the end of the
lesson, the learner
should be able to:
Read the logarithms of sines |
Solving problems by reading logarithm table of sines
|
Chalkboard Mathematical tables
Chalkboard Mathematical table |
KLB BK2 Pg 149
|
|
5 | 3 |
Trigonometry
|
Application of trigonometry to real life situations
Area of a triangle Area of a triangle given the base and height (A = ? bh) Area of a triangle using the formula (A = ? absin?) |
By the end of the
lesson, the learner
should be able to:
Solve problems in real life using trigonometry |
Solving problems using trigonometry in real life
|
Mathematical table
Chart illustrating worked problem Chalkboard Charts illustrating a triangle with two sides and an included angle Charts showing derived formula |
KLB BK2 Pg 153-154
|
|
5 | 4 |
Trigonometry
|
Area of a triangle using the formula A = ?s(s-a)(s-b)(s-c)
Area of Quadrilateral and Polygons Area of a square, rectangle, rhombus, parallelogram and trapezium Area of a kite |
By the end of the
lesson, the learner
should be able to:
Solve problems on the area of a triangle Given three sizes using the formula A = ?s(s-a)(s-b)(s-c) |
Solving problems on the area of triangle given three sides of a triangle
|
Charts illustrating a triangle with three sides Charts illustrating a worked example i.e. mathematical table
Charts illustrating formula used in calculating the areas of the quadrilateral Model of a kite |
KLB BK2 Pg 157-158
|
|
5 | 5 |
Trigonometry
|
Area of other polygons (regular polygon) e.g. Pentagon
Area of irregular Polygon Area of part of a circle Area of a sector (minor sector and a major sector) |
By the end of the
lesson, the learner
should be able to:
Find the area of a regular polygon |
Calculating the area of a regular polygon
|
Mathematical table Charts illustrating Polygons
Charts illustrating various irregular polygons Polygonal shapes Charts illustrating sectors |
KLB BK2 Pg 164
|
|
5 | 6 |
Trigonometry
|
Defining a segment of a circle Finding the area of a segment of a circle
Area of a common region between two circles given the angles and the radii Area of a common region between two circles given only the radii of the two circles and a common chord |
By the end of the
lesson, the learner
should be able to:
- Define what a segment of a circle is - Find the area of a segment of a circle |
Finding the area of a segment by first finding the area of a sector less the area of a smaller sector given R and r and angle ?
|
Chart illustrating a Segment
Charts illustrating common region between the circles Use of a mathematical table during calculation Charts illustrating common region between two intersecting circles |
KLB BK2 Pg 169-170
|
|
6 | 1 |
Trigonometry
|
Surface area of solids Surface area of prisms Cylinder (ii) Triangular prism (iii) Hexagonal prism
Area of a square based Pyramid Surface area of a Rectangular based Pyramid |
By the end of the
lesson, the learner
should be able to:
Define prism and hence be in a position of calculating the surface area of some prisms like cylinder, triangular prism and hexagonal prism |
Defining a prism Calculating the surface area of the prisms
|
Models of cylinder, triangular and hexagonal prisms
Models of a square based pyramid Models of a Rectangular based pyramid |
KLB BK 2 Pg 177
|
|
6 | 2 |
Trigonometry
|
Surface area of a cone using the formula A = ?r2 + ?rl
Surface area of a frustrum of a cone and a pyramid Finding the surface area of a sphere |
By the end of the
lesson, the learner
should be able to:
Find the total surface area of the cone by first finding the area of the circular base and then the area of the curved surface |
Finding the area of the circular part Finding the area of the curved part Getting the total surface Area
|
Models of a cone
Models of frustrum of a cone and a pyramid Models of a sphere Charts illustrating formula for finding the surface area of a sphere |
KLB BK 2 Pg 181
|
|
6 | 3 |
Trigonometry
|
Surface area of a Hemispheres
Volume of Solids Volume of prism (triangular based prism) Volume of prism (hexagonal based prism) given the sides and angle |
By the end of the
lesson, the learner
should be able to:
Find the surface area of a hemisphere |
Finding the surface area of a hemisphere
|
Models of a hemisphere
Models of a triangular based prism Models of hexagonal based prism |
KLB BK 2 Pg 184
|
|
6 | 4 |
Trigonometry
|
Volume of a pyramid (square based and rectangular based)
Volume of a cone Volume of a frustrum of a cone |
By the end of the
lesson, the learner
should be able to:
Find the volume of a square based pyramid and rectangular based pyramid |
Finding the surface area of the base Applying the formula V=?x base area x height to get the volume of the pyramids (square and rectangular based)
|
Models of square and Rectangular based Pyramids
Model of a cone Models of a frustrum of a cone |
KLB BK 2 Pg 189-190
|
|
6 | 5 |
Trigonometry
|
Volume of a frustrum of a pyramid
Volume of a sphere (v = 4/3?r3) Volume of a Hemisphere {(v = ? (4/3?r3)} |
By the end of the
lesson, the learner
should be able to:
Find the volume of a frustrum of a Pyramid |
Finding volume of a full pyramid Finding volume of cutoff pyramid Find volume of the remaining fig (frustrum) by subtracting i.e. Vf = (V ? v)
|
Models of frustrum of a pyramid
Model of a sphere Mathematical table Models of hemisphere |
KLB BK 2 Pg 194
|
|
6 | 6 |
Trigonometry
Trigonometric Ratios Trigonometric Ratios |
Application of area of triangles to real life
Tangent of an angle Tangent of an angle |
By the end of the
lesson, the learner
should be able to:
Use the knowledge of the area of triangles in solving problems in real life situation |
Solving problems in real life using the knowledge of the area of triangle
|
Mathematical table Chart illustrating formula used
Protractor Ruler Right corners Mathematical tables |
KLB BK 2 Pg 159
|
|
7 | 1 |
Trigonometric Ratios
|
Using tangents in calculations
Application of tangents The sine of an angle |
By the end of the
lesson, the learner
should be able to:
calculate the size of an angle given two sides and an angle from tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
7 | 2 |
Trigonometric Ratios
|
The cosine of an angle
Application of sine and cosine Complementary angles |
By the end of the
lesson, the learner
should be able to:
find the cosine of an angle by calculations and through tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
7 | 3 |
Trigonometric Ratios
|
Special angles
Application of Special angles Logarithms of sines, cosines and tangents |
By the end of the
lesson, the learner
should be able to:
find the sine, cos, and tan of 300,600,450,00,900, without using tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
7 | 4 |
Trigonometric Ratios
|
Relationship between sin, cos and tan
Application to real life situation Problem solving |
By the end of the
lesson, the learner
should be able to:
relate sin, cos and tan that is tan?=sin? cos? Solve problems using the relationship |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
7 | 5 |
Area of A Triangle
|
Area =
Solve problems involving = |
By the end of the
lesson, the learner
should be able to:
derive the formula Area = |
Discussions
Drawing triangles Measuring lengths/angles Calculating area |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 155-157
|
|
7 | 6 |
Area of A Triangle
Area of Quadrilaterals |
A =?s(s-a) (s-b) (s-c)
Problem solving Area of parallelogram |
By the end of the
lesson, the learner
should be able to:
find the area of a triangle given the three sides |
Discussions
Drawing triangles Measuring lengths/angles Calculating area |
Protractor
Ruler Right corners Mathematical tables Parallelograms Trapeziums Polygons Squares/rectangles |
KLB Maths Bk2 Pg. 155-157
|
|
8 |
Mid term exam |
|||||||
8 | 5 |
Area of Quadrilaterals
|
Area of Rhombus
Area of trapezium and kite Area of regular polygons |
By the end of the
lesson, the learner
should be able to:
find the area of a regular polygon. |
Drawing trapeziums/polygons
Measuring lengths/angles Reading mathematical tables Discussions |
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables Mathematical tables Chalkboard illustrations |
KLB Maths Bk2 Pg. 161
|
|
8 | 6 |
Area of Quadrilaterals
Area of Part of a Circle Area of Part of a Circle |
Problem solving
Area of a sector Area of a segment |
By the end of the
lesson, the learner
should be able to:
solve problems on area of quadrilaterals and other polygons |
Learners solve problems
|
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables Circles Chart illustrating the area of a sector Chart illustrating the area of a minor segment |
KLB Maths Bk2 Pg. 165-166
|
|
9 | 1 |
Area of Part of a Circle
|
Common region between two circles
Common region between two circles Problem solving |
By the end of the
lesson, the learner
should be able to:
find the area of the common region between two circles. |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a minor segment Chart illustrating the area of a minor segment Chalkboard illustrations |
KLB Maths Bk2 Pg. 167-169
|
|
9 |
Mid term break |
|||||||
9 | 2 |
Surface Area of Solids
|
Surface area of prisms
Surface area of pyramid Surface area of a cone |
By the end of the
lesson, the learner
should be able to:
find the surface area of a prism. |
Drawing prisms
Measuring lengths Opening prisms to form nets Discussions Calculating area |
Prism Chalkboard illustrations
Pyramids with square base, rectangular base, triangular base Cone |
KLB Maths Bk2 Pg. 177
|
|
9 | 3 |
Surface Area of Solids
|
Surface area of frustrum with circular base
Surface area of frustrum with square base Surface area of frustrum with rectangular base |
By the end of the
lesson, the learner
should be able to:
find the surface area of frustrum with circular base |
Drawing cones/frustums
Making cones/frustums Measuring lengths/ angles Discussions |
Chart illustrating the surface area of a frustrum
Chart illustrating frustrum with a square base Chart illustrating frustrum with a rectangular base |
KLB Maths Bk2 Pg. 181-283
KLBMathematics Bk2 Discovering Secondary Mathematics Bk2 |
|
9 | 4 |
Surface Area of Solids
Volume of Solids |
Surface area of spheres
Problem solving Volume of prism |
By the end of the
lesson, the learner
should be able to:
find the surface area of a sphere |
Sketching spheres
Making spheres Measuring diameters/ radii of spheres Discussions |
Chalkboard illustrations
Past paper questions Prism |
KLB Maths Bk2 Pg. 183
|
|
9 | 5 |
Volume of Solids
|
Volume of pyramid
Volume of a cone Volume of a sphere |
By the end of the
lesson, the learner
should be able to:
find the volume of a pyramid |
Drawing pyramids
Making pyramids Opening pyramids to form nets Discussions |
Pyramid
Cone Sphere |
KLB Maths Bk2 Pg. 189-190
|
|
9 | 6 |
Volume of Solids
|
Volume of frustrum
Volume of frustrum with a square base Volume of frustrum with a rectangular base |
By the end of the
lesson, the learner
should be able to:
find the volume of a frustrum with a circular base |
Making cones/frustums
Opening cones/frustums to form nets |
Frustrum with circular base
Frustrum with square base Frustrum with rectangular base |
KLB Maths Bk2 Pg. 192-193
|
|
10 | 1 |
Volume of Solids
Quadratic Expressions and Equations |
Application to real life situation
Problem solving Expansion of Algebraic Expressions |
By the end of the
lesson, the learner
should be able to:
apply the knowledge of volume of solids to real life situations. |
Making cones/frustums
Opening cones/frustums to form nets |
Models of pyramids, prism, cones and spheres
Past paper questions Real-life experiences Worked out expressions |
KLB Maths Bk2 Pg. 193-194
|
|
10 | 2 |
Quadratic Expressions and Equations
|
Quadratic identities
Application of identities Factorise the Identities |
By the end of the
lesson, the learner
should be able to:
derive the three Algebraic identities |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 204-205
|
|
10 | 3 |
Quadratic Expressions and Equations
|
Factorise other quadratic expressions
Factorisation of expressions of the form k2-9y2 Simplification of an expression by factorisation |
By the end of the
lesson, the learner
should be able to:
factorise quadratic expressions |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Chart illustrating factorization of a quadratic expression
Real-life experiences Worked out expressions |
KLB Maths Bk2 Pg. 119-122
|
|
10 | 4 |
Quadratic Expressions and Equations
|
Solving quadratic equations
The formation of quadratic equations Formation and solving of quadratic equations from word problems |
By the end of the
lesson, the learner
should be able to:
solve quadratic equations |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 208
|
|
10 | 5 |
Quadratic Expressions and Equations
Linear Inequalities |
Solving on quadratic equations
Forming quadratic equations from the roots Inequalities symbols |
By the end of the
lesson, the learner
should be able to:
solve problems on quadratic equations |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions Number lines Graph papers Square boards Negative and positive numbers |
KLB Maths Bk2 Pg. 208-210
|
|
10 | 6 |
Linear Inequalities
|
Number line
Inequalities in one unknown Graphical representation |
By the end of the
lesson, the learner
should be able to:
illustrate inequalities on a number line |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers Number lines Graph papers |
KLB Maths Bk2 Pg. 213-224
|
|
11 | 1 |
Linear Inequalities
|
Graphical solutions of simultaneous linear inequalities
Area of the wanted region |
By the end of the
lesson, the learner
should be able to:
solve the linear inequalities in two unknowns graphically |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers |
KLB Maths Bk2 Pg. 213-224
|
|
11 | 2 |
Linear Inequalities
Linear Motion |
Inequalities from inequality graphs
Problem solving. Displacement, velocity, speed and acceleration |
By the end of the
lesson, the learner
should be able to:
form simple linear inequalities from inequality graphs |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers Stones Pieces of paper |
KLB Maths Bk2 Pg. 213-224
|
|
11 | 3 |
Linear Motion
|
Distinguishing terms
Distinguishing velocity and acceleration Distance time graphs |
By the end of the
lesson, the learner
should be able to:
distinguish between distance and displacement, speed and velocity |
Plotting graphs
Drawing graphs |
Graph papers
Stones Pieces of paper |
KLB Maths Bk2 Pg. 228-238
|
|
11 | 4 |
Linear Motion
|
Interpret the velocity time graph
Interpreting graphs Relative speed (objects moving in the same direction) |
By the end of the
lesson, the learner
should be able to:
interpret a velocity time graph |
Learners interpret a velocity time graph
|
Drawn graphs
Real life situation Chalkboard illustrations |
KLB
Maths Bk2 Pg.333 |
|
11 | 5 |
Linear Motion
Statistics Statistics |
Problem solving
Definition Collection and organization of data |
By the end of the
lesson, the learner
should be able to:
solve problems on linear motion |
Question answer method
|
Past paper questions
Weighing balance Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB
Maths Bk2 Pg.330 |
|
11 | 6 |
Statistics
|
Frequency tables
Grouped data Mean of ungrouped data |
By the end of the
lesson, the learner
should be able to:
draw a frequency distribution table |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
12 | 1 |
Statistics
|
Median of ungrouped data
Mean of ungrouped data Median of a grouped data modal class |
By the end of the
lesson, the learner
should be able to:
calculate the median of ungrouped data and state the mode |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
12 | 2 |
Statistics
|
Data
Representation.
Line graphs
Bar graphs Pictogram |
By the end of the
lesson, the learner
should be able to:
represent data in form of a line graph |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers Pictures which are whole, half, quarter |
KLB Maths Bk2 Pg. 241-252
|
|
12 | 3 |
Statistics
|
Histograms
Frequency polygons Histograms with uneven distribution |
By the end of the
lesson, the learner
should be able to:
represent data in form of histograms |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers Histograms drawn. Data Data with uneven classes |
KLB Maths Bk2 Pg. 241-252
|
|
12 | 4 |
Statistics
Angle Properties of a Circle |
Interpretation of data
Problem solving Arc chord segment |
By the end of the
lesson, the learner
should be able to:
interpret data from real life situation |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Real life situations
Past paper questions Chart illustrating arc chord and segment |
KLB Maths Bk2 Pg. 241-252
|
|
12 | 5 |
Angle Properties of a Circle
|
Angles subtended by the same arc in the same segment
Angle at the centre and at the circumference Angles subtended by the diameter at the circumference |
By the end of the
lesson, the learner
should be able to:
relate and compute angles subtended by an arc of a circle at the circumference |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Chart illustrating Angles subtended by the same arc in same segment are equal
Chart illustrating Angles subtended at the centre by an arc and one subtended at the circumference Circles showing the different parts |
KLB Maths Bk2 Pg. 264-278
|
|
12 | 6 |
Angle Properties of a Circle
|
Cyclic quadrilateral
Exterior angle property |
By the end of the
lesson, the learner
should be able to:
state the angle properties of a cyclic quadrilateral |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Circles showing the
different parts |
KLB Maths Bk2 Pg. 264-278
|
|
13 | 1 |
Angle Properties of a Circle
Vectors |
Problem solving
Problem solving Definition and Representation of vectors |
By the end of the
lesson, the learner
should be able to:
solve problems on angle properties of a circle |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Circles showing the
different parts Past paper questions different parts Past paper questions 1x2 matrices Graph papers Square boards Ruler |
KLB Maths Bk2 Pg. 264-278
|
|
13 | 2 |
Vectors
|
Equivalent vectors
Addition of vectors Multiplication of vectors |
By the end of the
lesson, the learner
should be able to:
identify equivalent vectors |
Writing position vectors
Adding/subtracting numbers Squaring and getting the square root of numbers |
1x2 matrices
Graph papers Square boards Ruler |
KLB Maths Bk2 Pg. 285
|
|
13 |
End term exam |
|||||||
14 | 1 |
Vectors
|
Position vectors
Column vector Magnitude of a vector Mid - point Translation vector |
By the end of the
lesson, the learner
should be able to:
define a position vector illustrate position vectors on a Cartesian plane |
Writing position vectors
Adding/subtracting numbers Squaring and getting the square root of numbers |
1x2 matrices
Graph papers Square boards Ruler |
KLB Maths Bk2 Pg.298
|
Your Name Comes Here