If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1 |
Trigonometry
|
Pythagoras Theorem
|
By the end of the
lesson, the learner
should be able to:
Derive Pythagoras Theorem |
Deriving Pythagoras Theorem
|
Chalkboard Charts Illustrating derived theorem
|
KLB BK2 Pg 120 Discovering secondary pg 67
|
|
2 | 2 |
Trigonometry
|
Solutions of problems Using Pythagoras Theorem
Application to real life Situation |
By the end of the
lesson, the learner
should be able to:
Solve problems using Pythagoras Theorem |
Solving problems using Pythagoras theorem
|
Charts illustrating Pythagoras theorem
Mathematical table |
KLB BK2 Pg 121 Discovering secondary pg 67
|
|
2 | 3 |
Trigonometry
|
Trigonometry Tangent, sine and cosines
Trigonometric Table |
By the end of the
lesson, the learner
should be able to:
Define tangent, sine and cosine ratios from a right angles triangle |
Defining what a tangent, Cosine and sine are using a right angled triangle
|
Charts illustrating tangent, sine and cosine
Mathematical table |
KLB BK2 Pg 123,132,133 Discovering secondary pg 70
|
|
2 | 4 |
Trigonometry
|
Angles and sides of a right angled triangle
Establishing Relationship of sine and cosine of complimentary angles Sines and cosines of Complimentary angles |
By the end of the
lesson, the learner
should be able to:
Use the sine, cosine and tangent in calculating the length of a right angled triangle and also finding the angle given two sides and unknown angle The length can be obtained if one side is given and an angle |
Using mathematical tables Finding the length using sine ratio Finding the length using Cosine and tangent ratio Finding the angle using Sine, cosine and tangent
|
Mathematical table Charts Chalkboard
Chalkboards Chalkboard Charts illustrating the relationship of sines and cosines of complimentary angles |
KLB BK2 Pg 125, 139, 140 Discovering secondary pg
|
|
2 | 5 |
Trigonometry
|
Relationship between tangent, sine and cosine
Trigonometric ratios of special angles 30, 45, 60 and 90 |
By the end of the
lesson, the learner
should be able to:
Relate the three trigonometric ratios, the sine, cosine and tangent |
Relating the three trigonometric ratios
|
Charts showing the three related trigonometric ratio
Charts showing isosceles right angled triangle Charts illustrating Equilateral triangle |
KLB BK2 Pg 145
|
|
2 | 6 |
Trigonometry
|
Application of Trigonometric ratios in solving problems
Logarithms of Sines |
By the end of the
lesson, the learner
should be able to:
Solve trigonometric problems without using tables |
Solving trigonometric problems of special angles
|
Chalkboard
Chalkboard Mathematical tables |
KLB BK2 Pg 148
|
|
3 | 1 |
Trigonometry
|
Logarithms of cosines And tangents
Reading tables of logarithms of sines, cosines and tangents |
By the end of the
lesson, the learner
should be able to:
Read the logarithm of cosines and tangents from mathematical tables |
Reading logarithms of cosine and tangent from mathematical table
|
Chalkboard Mathematical table
|
KLB BK2 Pg 150-152
|
|
3 | 2 |
Trigonometry
|
Application of trigonometry to real life situations
Area of a triangle Area of a triangle given the base and height (A = ? bh) Area of a triangle using the formula (A = ? absin?) |
By the end of the
lesson, the learner
should be able to:
Solve problems in real life using trigonometry |
Solving problems using trigonometry in real life
|
Mathematical table
Chart illustrating worked problem Chalkboard Charts illustrating a triangle with two sides and an included angle Charts showing derived formula |
KLB BK2 Pg 153-154
|
|
3 | 3 |
Trigonometry
|
Area of a triangle using the formula A = ?s(s-a)(s-b)(s-c)
Area of Quadrilateral and Polygons Area of a square, rectangle, rhombus, parallelogram and trapezium |
By the end of the
lesson, the learner
should be able to:
Solve problems on the area of a triangle Given three sizes using the formula A = ?s(s-a)(s-b)(s-c) |
Solving problems on the area of triangle given three sides of a triangle
|
Charts illustrating a triangle with three sides Charts illustrating a worked example i.e. mathematical table
Charts illustrating formula used in calculating the areas of the quadrilateral |
KLB BK2 Pg 157-158
|
|
3 | 4 |
Trigonometry
|
Area of a kite
Area of other polygons (regular polygon) e.g. Pentagon |
By the end of the
lesson, the learner
should be able to:
Find the area of a kite |
Calculating the area of a Kite
|
Model of a kite
Mathematical table Charts illustrating Polygons |
KLB BK2 Pg 163
|
|
3 | 5 |
Trigonometry
|
Area of irregular Polygon
Area of part of a circle Area of a sector (minor sector and a major sector) Defining a segment of a circle Finding the area of a segment of a circle |
By the end of the
lesson, the learner
should be able to:
Find the area of irregular polygons |
Finding the area of irregular polygons
|
Charts illustrating various irregular polygons Polygonal shapes
Charts illustrating sectors Chart illustrating a Segment |
KLB BK2 Pg 166
|
|
3 | 6 |
Trigonometry
|
Area of a common region between two circles given the angles and the radii
Area of a common region between two circles given only the radii of the two circles and a common chord |
By the end of the
lesson, the learner
should be able to:
Find the area of common region between two circles given the angles ? Education Plus Agencies |
Calculating the area of a segment
|
Charts illustrating common region between the circles Use of a mathematical table during calculation
Charts illustrating common region between two intersecting circles |
KLB BK 2 Pg 175
|
|
4 | 1 |
Trigonometry
|
Surface area of solids Surface area of prisms Cylinder (ii) Triangular prism (iii) Hexagonal prism
Area of a square based Pyramid |
By the end of the
lesson, the learner
should be able to:
Define prism and hence be in a position of calculating the surface area of some prisms like cylinder, triangular prism and hexagonal prism |
Defining a prism Calculating the surface area of the prisms
|
Models of cylinder, triangular and hexagonal prisms
Models of a square based pyramid |
KLB BK 2 Pg 177
|
|
4 | 2 |
Trigonometry
|
Surface area of a Rectangular based Pyramid
Surface area of a cone using the formula A = ?r2 + ?rl Surface area of a frustrum of a cone and a pyramid |
By the end of the
lesson, the learner
should be able to:
Find the surface area of a rectangular based pyramid |
Finding the surface area of a rectangular based pyramid
|
Models of a Rectangular based pyramid
Models of a cone Models of frustrum of a cone and a pyramid |
KLB BK 2 Pg 179-180
|
|
4 | 3 |
Trigonometry
|
Finding the surface area of a sphere
Surface area of a Hemispheres |
By the end of the
lesson, the learner
should be able to:
Find the surface area of a sphere given the radius of a sphere |
Finding the surface area of a sphere
|
Models of a sphere Charts illustrating formula for finding the surface area of a sphere
Models of a hemisphere |
KLB BK 2 Pg 183
|
|
4 | 4 |
Trigonometry
|
Volume of Solids Volume of prism (triangular based prism)
Volume of prism (hexagonal based prism) given the sides and angle |
By the end of the
lesson, the learner
should be able to:
Find the volume of a triangular based prism |
Finding the volume of a triangular based prism
|
Models of a triangular based prism
Models of hexagonal based prism |
KLB BK 2 Pg 186
|
|
4 | 5 |
Trigonometry
|
Volume of a pyramid (square based and rectangular based)
Volume of a cone Volume of a frustrum of a cone |
By the end of the
lesson, the learner
should be able to:
Find the volume of a square based pyramid and rectangular based pyramid |
Finding the surface area of the base Applying the formula V=?x base area x height to get the volume of the pyramids (square and rectangular based)
|
Models of square and Rectangular based Pyramids
Model of a cone Models of a frustrum of a cone |
KLB BK 2 Pg 189-190
|
|
4 | 6 |
Trigonometry
|
Volume of a frustrum of a pyramid
Volume of a sphere (v = 4/3?r3) |
By the end of the
lesson, the learner
should be able to:
Find the volume of a frustrum of a Pyramid |
Finding volume of a full pyramid Finding volume of cutoff pyramid Find volume of the remaining fig (frustrum) by subtracting i.e. Vf = (V ? v)
|
Models of frustrum of a pyramid
Model of a sphere Mathematical table |
KLB BK 2 Pg 194
|
|
5 | 1 |
Trigonometry
|
Volume of a Hemisphere {(v = ? (4/3?r3)}
Application of area of triangles to real life |
By the end of the
lesson, the learner
should be able to:
Find the volume of a hemisphere |
Working out the volume of a hemisphere
|
Models of hemisphere
Mathematical table Chart illustrating formula used |
Macmillan BK 2 Pg 173
|
|
5 | 2 |
Trigonometric Ratios
|
Tangent of an angle
|
By the end of the
lesson, the learner
should be able to:
name the sides of a right-angled triangle as opposite, adjacent and hypotenuse. Find the tangent of an angle by calculation |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
5 | 3 |
Trigonometric Ratios
|
Using tangents in calculations
Application of tangents The sine of an angle |
By the end of the
lesson, the learner
should be able to:
calculate the size of an angle given two sides and an angle from tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
5 | 4 |
Trigonometric Ratios
|
The cosine of an angle
Application of sine and cosine |
By the end of the
lesson, the learner
should be able to:
find the cosine of an angle by calculations and through tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
5 | 5 |
Trigonometric Ratios
|
Complementary angles
Special angles |
By the end of the
lesson, the learner
should be able to:
define complementary angles. Work out sines of an angle given the cosine of its complimentary and vice versa |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
5 | 6 |
Trigonometric Ratios
|
Application of Special angles
Logarithms of sines, cosines and tangents Relationship between sin, cos and tan |
By the end of the
lesson, the learner
should be able to:
apply the knowledge of special angles to solve problems |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
6 | 1 |
Trigonometric Ratios
|
Application to real life situation
Problem solving |
By the end of the
lesson, the learner
should be able to:
apply the knowledge of trigonometry to real life situations |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
6 | 2 |
Area of A Triangle
|
Area =
Solve problems involving = |
By the end of the
lesson, the learner
should be able to:
derive the formula Area = |
Discussions
Drawing triangles Measuring lengths/angles Calculating area |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 155-157
|
|
6 | 3 |
Area of A Triangle
Area of Quadrilaterals |
A =?s(s-a) (s-b) (s-c)
Problem solving Area of parallelogram |
By the end of the
lesson, the learner
should be able to:
find the area of a triangle given the three sides |
Discussions
Drawing triangles Measuring lengths/angles Calculating area |
Protractor
Ruler Right corners Mathematical tables Parallelograms Trapeziums Polygons Squares/rectangles |
KLB Maths Bk2 Pg. 155-157
|
|
6 | 4 |
Area of Quadrilaterals
|
Area of Rhombus
Area of trapezium and kite |
By the end of the
lesson, the learner
should be able to:
find the area of a regular polygon. |
Drawing trapeziums/polygons
Measuring lengths/angles Reading mathematical tables Discussions |
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables |
KLB Maths Bk2 Pg. 161
|
|
6 | 5 |
Area of Quadrilaterals
|
Area of regular polygons
Problem solving |
By the end of the
lesson, the learner
should be able to:
find the area of a regular polygon by using the formula A= |
Drawing trapeziums/polygons
Measuring lengths/angles Reading mathematical tables Discussions |
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables Chalkboard illustrations Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
6 | 6 |
Area of Part of a Circle
|
Area of a sector
Area of a segment Common region between two circles |
By the end of the
lesson, the learner
should be able to:
find area of a sector |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a sector Chart illustrating the area of a minor segment |
KLB Maths Bk2 Pg. 167-169
|
|
7 | 1 |
Area of Part of a Circle
|
Common region between two circles
Problem solving |
By the end of the
lesson, the learner
should be able to:
find the area of the common region between two circles and solve problems related to that |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a minor segment Chart illustrating the area of a minor segment Chalkboard illustrations |
KLB Maths Bk2 Pg. 167-169
|
|
7 | 2 |
Surface Area of Solids
|
Surface area of prisms
Surface area of pyramid |
By the end of the
lesson, the learner
should be able to:
find the surface area of a prism. |
Drawing prisms
Measuring lengths Opening prisms to form nets Discussions Calculating area |
Prism Chalkboard illustrations
Pyramids with square base, rectangular base, triangular base |
KLB Maths Bk2 Pg. 177
|
|
7 | 3 |
Surface Area of Solids
|
Surface area of a cone
Surface area of frustrum with circular base |
By the end of the
lesson, the learner
should be able to:
find the surface area of a cone |
Drawing cones/frustums
Making cones/frustums Measuring lengths/ angles Discussions |
Cone
Chart illustrating the surface area of a frustrum |
KLB Maths Bk2 Pg. 180
KLBMathematics Bk2 Discovering Secondary Mathematics Bk2 |
|
7 | 4 |
Surface Area of Solids
|
Surface area of frustrum with square base
Surface area of frustrum with rectangular base Surface area of spheres |
By the end of the
lesson, the learner
should be able to:
find the surface area of frustrum with square base |
Drawing cones/frustums
Making cones/frustums Measuring lengths/ angles Discussions Learners find the surface area |
Chart illustrating frustrum with a square base
Chart illustrating frustrum with a rectangular base Chalkboard illustrations |
KLB Maths Bk2 Pg. 181-183
|
|
7 | 5 |
Surface Area of Solids
Volume of Solids |
Problem solving
Volume of prism |
By the end of the
lesson, the learner
should be able to:
solve problems on surface area of solids |
Learners solve problems
|
Past paper questions
Prism |
KLB Maths Bk2 Pg. 183
|
|
7 | 6 |
Volume of Solids
|
Volume of pyramid
Volume of a cone |
By the end of the
lesson, the learner
should be able to:
find the volume of a pyramid |
Drawing pyramids
Making pyramids Opening pyramids to form nets Discussions |
Pyramid
Cone |
KLB Maths Bk2 Pg. 189-190
|
|
8 | 1 |
Volume of Solids
|
Volume of a sphere
Volume of frustrum Volume of frustrum with a square base |
By the end of the
lesson, the learner
should be able to:
find the volume of a sphere |
Identifying spheres
Sketching spheres Measuring radii/ diameters Discussions |
Sphere
Frustrum with circular base Frustrum with square base |
KLB Maths Bk2 Pg. 195
|
|
8 | 2 |
Volume of Solids
|
Volume of frustrum with a rectangular base
Application to real life situation |
By the end of the
lesson, the learner
should be able to:
find the volume of a frustrum with a rectangular base |
Making cones/frustums
Opening cones/frustums to form nets |
Frustrum with rectangular base
Models of pyramids, prism, cones and spheres |
KLB Maths Bk2 Pg. 192-193
|
|
8 | 3 |
Volume of Solids
Quadratic Expressions and Equations |
Problem solving
Expansion of Algebraic Expressions |
By the end of the
lesson, the learner
should be able to:
solve problems on volume of solids |
Making cones/frustums
Opening cones/frustums to form nets |
Past paper questions
Real-life experiences Worked out expressions |
KLB Maths Bk2 Pg. 196
|
|
8 | 4 |
Quadratic Expressions and Equations
|
Quadratic identities
Application of identities Factorise the Identities |
By the end of the
lesson, the learner
should be able to:
derive the three Algebraic identities |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 204-205
|
|
8 | 5 |
Quadratic Expressions and Equations
|
Factorise other quadratic expressions
Factorisation of expressions of the form k2-9y2 |
By the end of the
lesson, the learner
should be able to:
factorise quadratic expressions |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Chart illustrating factorization of a quadratic expression
Real-life experiences Worked out expressions |
KLB Maths Bk2 Pg. 119-122
|
|
8 | 6 |
Quadratic Expressions and Equations
|
Simplification of an expression by factorisation
Solving quadratic equations |
By the end of the
lesson, the learner
should be able to:
simplify a quadratic expression by factorisation |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 205-208
|
|
9 | 1 |
Quadratic Expressions and Equations
|
The formation of quadratic equations
Formation and solving of quadratic equations from word problems Solving on quadratic equations |
By the end of the
lesson, the learner
should be able to:
form quadratic equations from information |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 208
|
|
9 | 2 |
Quadratic Expressions and Equations
Linear Inequalities |
Forming quadratic equations from the roots
Inequalities symbols |
By the end of the
lesson, the learner
should be able to:
form quadratic equations given the roots of the equation |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions Number lines Graph papers Square boards Negative and positive numbers |
KLB Maths Bk2 Pg. 210
|
|
9 | 3 |
Linear Inequalities
|
Number line
Inequalities in one unknown |
By the end of the
lesson, the learner
should be able to:
illustrate inequalities on a number line |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers |
KLB Maths Bk2 Pg. 213-224
|
|
9 | 4 |
Linear Inequalities
|
Graphical representation
Graphical solutions of simultaneous linear inequalities Graphical solutions of simultaneous linear inequalities |
By the end of the
lesson, the learner
should be able to:
represent linear inequalities in one unknown graphically |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines Graph papers
Square boards Negative and positive numbers Number lines Graph papers |
KLB Maths Bk2 Pg. 213-224
|
|
9 | 5 |
Linear Inequalities
|
Area of the wanted region
Inequalities from inequality graphs |
By the end of the
lesson, the learner
should be able to:
calculate the area of the wanted region |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers |
KLB Maths Bk2 Pg. 213-224
|
|
9 |
Midterm |
|||||||
10 | 1 |
Linear Inequalities
Linear Motion |
Problem solving.
Displacement, velocity, speed and acceleration |
By the end of the
lesson, the learner
should be able to:
solve problems on linear inequalities |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers Stones Pieces of paper |
KLB Maths Bk2 Pg. 213-224
|
|
10 | 2 |
Linear Motion
|
Distinguishing terms
Distinguishing velocity and acceleration |
By the end of the
lesson, the learner
should be able to:
distinguish between distance and displacement, speed and velocity |
Plotting graphs
Drawing graphs |
Graph papers
Stones Pieces of paper |
KLB Maths Bk2 Pg. 228-238
|
|
10 | 3 |
Linear Motion
|
Distance time graphs
Interpret the velocity time graph Interpreting graphs |
By the end of the
lesson, the learner
should be able to:
plot and draw the distance time graphs |
Plotting graphs
Drawing graphs |
Graph papers
Stones Pieces of paper Drawn graphs |
KLB Maths Bk2 Pg. 228-238
|
|
10 | 4 |
Linear Motion
|
Relative speed (objects moving in the same direction)
Problem solving |
By the end of the
lesson, the learner
should be able to:
solve problems on objects moving in different directions |
Teacher/pupil discussion
|
Real life situation
Chalkboard illustrations Past paper questions |
KLB
Maths Bk2 Pg.329 |
|
10 | 5 |
Statistics
|
Definition
Collection and organization of data |
By the end of the
lesson, the learner
should be able to:
define statistics |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
10 | 6 |
Statistics
|
Frequency tables
Grouped data Mean of ungrouped data |
By the end of the
lesson, the learner
should be able to:
draw a frequency distribution table |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
11 | 1 |
Statistics
|
Median of ungrouped data
Mean of ungrouped data |
By the end of the
lesson, the learner
should be able to:
calculate the median of ungrouped data and state the mode |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
11 | 2 |
Statistics
|
Median of a grouped data modal class
Data Representation. Line graphs |
By the end of the
lesson, the learner
should be able to:
state the modal class and calculate the median of a grouped data. |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
11 | 3 |
Statistics
|
Bar graphs
Pictogram Histograms |
By the end of the
lesson, the learner
should be able to:
represent data in form of a bar graph |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers Pictures which are whole, half, quarter |
KLB Maths Bk2 Pg. 241-252
|
|
11 | 4 |
Statistics
|
Frequency polygons
Histograms with uneven distribution |
By the end of the
lesson, the learner
should be able to:
represent data in form of frequency polygons |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Histograms drawn. Data
Data with uneven classes |
KLB Maths Bk2 Pg. 241-252
|
|
11 | 5 |
Statistics
|
Interpretation of data
Problem solving |
By the end of the
lesson, the learner
should be able to:
interpret data from real life situation |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Real life situations
Past paper questions |
KLB Maths Bk2 Pg. 241-252
|
|
11 | 6 |
Angle Properties of a Circle
|
Arc chord segment
Angles subtended by the same arc in the same segment Angle at the centre and at the circumference |
By the end of the
lesson, the learner
should be able to:
identify an arc, chord and segment |
Discussions
Drawing circles Measuring radii/ diameters/angles Identifying the parts of a circle |
Chart illustrating arc chord and segment
Chart illustrating Angles subtended by the same arc in same segment are equal Chart illustrating Angles subtended at the centre by an arc and one subtended at the circumference |
KLB Maths Bk2 Pg. 264-278
|
|
12 | 1 |
Angle Properties of a Circle
|
Angles subtended by the diameter at the circumference
Cyclic quadrilateral |
By the end of the
lesson, the learner
should be able to:
state the angle in the semi-circle |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Circles showing the
different parts |
KLB Maths Bk2 Pg. 264-278
|
|
12 | 2 |
Angle Properties of a Circle
|
Cyclic quadrilateral
Exterior angle property |
By the end of the
lesson, the learner
should be able to:
find and compute angles of a cyclic quadrilateral |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Circles showing the
different parts |
KLB Maths Bk2 Pg. 264-278
|
|
12 | 3 |
Angle Properties of a Circle
|
Problem solving
Problem solving |
By the end of the
lesson, the learner
should be able to:
solve problems on angle properties of a circle |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Circles showing the
different parts Past paper questions different parts Past paper questions |
KLB Maths Bk2 Pg. 264-278
|
|
12 | 4 |
Vectors
|
Definition and Representation of vectors
Equivalent vectors Addition of vectors |
By the end of the
lesson, the learner
should be able to:
define a vector and a scalar, use vector notation and represent vectors. |
Writing position vectors
Adding/subtracting numbers Squaring and getting the square root of numbers |
1x2 matrices
Graph papers Square boards Ruler |
KLB Maths Bk2 Pg. 284-285
|
|
12 | 5 |
Vectors
|
Multiplication of vectors
Position vectors |
By the end of the
lesson, the learner
should be able to:
multiply a vector and a scalar |
Writing position vectors
Adding/subtracting numbers Squaring and getting the square root of numbers |
1x2 matrices
Graph papers Square boards Ruler |
KLB Maths Bk2 Pg. 290
|
|
12 | 6 |
Vectors
|
Column vector
Magnitude of a vector Mid - point Translation vector |
By the end of the
lesson, the learner
should be able to:
write a vector as a column vector |
Writing position vectors
Adding/subtracting numbers Squaring and getting the square root of numbers |
1x2 matrices
Graph papers Square boards Ruler |
KLB Maths Bk2 Pg. 296-297
|
Your Name Comes Here