Home






SCHEME OF WORK
INTEGRATED SCIENCE
Grade 9 2025
TERM II
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN STRAND SUB-STRAND LESSON LEARNING OUTCOMES LEARNING EXPERIENCES KEY INQUIRY QUESTIONS LEARNING RESOURCES ASSESSMENT METHODS REFLECTION
1 1
Mixtures, Elements and Compounds
Metals and Alloys - Identifying metals
By the end of the lesson, the learner should be able to:

- Identify metals and non-metals in the environment
- Classify materials as metallic or non-metallic
- Appreciate the variety of materials in the environment
- Observe pictures of items made from different materials
- Identify and classify materials as metallic or non-metallic
- Walk around the school to identify metallic and non-metallic items
How are alloys important in day-to-day life?
- Mentor Integrated Science (pg. 15)
- Samples of metallic and non-metallic items
- Digital resources
- Pictures
- Observation - Oral questions - Written assignments
1 2
Mixtures, Elements and Compounds
Metals and Alloys - Classification of materials
Metals and Alloys - Physical properties (state)
By the end of the lesson, the learner should be able to:

- Classify different materials into metals and non-metals
- Explain reasons for classification based on observable properties
- Show interest in materials in the environment
- Walk around the school compound to observe materials
- Classify observed materials as metallic or non-metallic
- Record findings and share with classmates
How are alloys important in day-to-day life?
- Mentor Integrated Science (pg. 15)
- Samples of different materials
- Digital resources
- Worksheets
- Mentor Integrated Science (pg. 16)
- Samples of different metals
- Charts
- Observation - Field activity - Written reports
1 3
Mixtures, Elements and Compounds
Metals and Alloys - Malleability
Metals and Alloys - Ductility
By the end of the lesson, the learner should be able to:

- Investigate the malleability of different metals
- Explain the property of malleability in metals
- Observe safety measures when investigating metal properties
- Carry out an investigation on malleability of different metals
- Record observations when metals are hammered
- Compare the malleability of different metals
How are alloys important in day-to-day life?
- Mentor Integrated Science (pg. 17)
- Samples of different metals
- Hammer or mallet
- Safety equipment
- Metal wires
- Pliers
- Observation - Practical work - Written reports
1 4
Mixtures, Elements and Compounds
Metals and Alloys - Electrical conductivity
Metals and Alloys - Thermal conductivity
By the end of the lesson, the learner should be able to:

- Investigate the electrical conductivity of different metals
- Explain why metals conduct electricity
- Show interest in investigating electrical properties of metals
- Set up simple circuits to test electrical conductivity
- Record observations on how different metals conduct electricity
- Compare the electrical conductivity of different metals
How are alloys important in day-to-day life?
- Mentor Integrated Science (pg. 18)
- Simple circuit components
- Metal samples
- Digital resources
- Mentor Integrated Science (pg. 19)
- Heat source
- Candle wax or cooking fat
- Observation - Practical work - Written reports
1 5
Mixtures, Elements and Compounds
Metals and Alloys - Causes of rusting
Metals and Alloys - Effects of rusting
By the end of the lesson, the learner should be able to:

- Investigate causes of rusting in iron
- Explain conditions necessary for rusting to occur
- Appreciate the importance of understanding rusting
- Set up experiments to investigate rusting
- Record observations on rusting under different conditions
- Discuss factors that cause rusting
How are alloys important in day-to-day life?
- Mentor Integrated Science (pg. 20)
- Iron nails
- Test tubes
- Water and oil
- Digital resources
- Mentor Integrated Science (pg. 21)
- Pictures of rusted items
- Actual rusted items
- Observation - Practical work - Written reports
2 1
Mixtures, Elements and Compounds
Metals and Alloys - Control of rusting
Metals and Alloys - Investigating rusting
By the end of the lesson, the learner should be able to:

- Describe methods of preventing rusting
- Explain how different methods prevent rusting
- Appreciate the importance of preventing rusting
- Search for information on ways of preventing rusting
- Discuss different methods of preventing rusting
- Share findings on rust prevention
How are alloys important in day-to-day life?
- Mentor Integrated Science (pg. 22)
- Digital resources
- Items with rust prevention
- Pictures
- Camera (if available)
- Observation sheets
- Rusted items
- Observation - Oral presentations - Written assignments
2 2
Mixtures, Elements and Compounds
Metals and Alloys - Uses of metals
Metals and Alloys - Identifying alloys
By the end of the lesson, the learner should be able to:

- Identify uses of various metals in everyday life
- Match metals to their appropriate uses
- Appreciate the importance of metals in daily life
- Search for information on uses of metals
- Discuss uses of different metals in daily life
- Match metals to their uses
How are alloys important in day-to-day life?
- Mentor Integrated Science (pg. 23)
- Digital resources
- Pictures showing uses of metals
- Charts
- Mentor Integrated Science (pg. 24)
- Samples of items made from alloys
- Pictures
- Observation - Oral presentations - Written assignments
2 3
Mixtures, Elements and Compounds
Metals and Alloys - Alloys in locality
Metals and Alloys - Composition of alloys
By the end of the lesson, the learner should be able to:

- Collect items made from alloys in the locality
- Identify the alloys used to make different items
- Appreciate the use of alloys in everyday items
- Walk around school to identify items made from alloys
- Collect or take photographs of items made from alloys
- Discuss why the items are made from alloys
How are alloys important in day-to-day life?
- Mentor Integrated Science (pg. 24)
- Items made from alloys
- Camera (if available)
- Digital resources
- Mentor Integrated Science (pg. 25)
- Pictures of different alloys
- Charts
- Observation - Field activity - Project work
2 4
Mixtures, Elements and Compounds
Metals and Alloys - Uses of alloys
Metals and Alloys - Observing alloy uses
By the end of the lesson, the learner should be able to:

- Identify uses of common alloys in everyday life
- Match alloys to their appropriate uses
- Appreciate the importance of alloys in daily life
- Observe pictures showing uses of common alloys
- Discuss uses of different alloys
- Search for information on uses of alloys
How are alloys important in day-to-day life?
- Mentor Integrated Science (pg. 26)
- Digital resources
- Pictures showing uses of alloys
- Charts
- Mentor Integrated Science (pg. 27)
- Observation sheets
- Items made from alloys
- Observation - Oral presentations - Written assignments
2 5
Mixtures, Elements and Compounds
Metals and Alloys - Assessment
Water hardness - Physical properties
By the end of the lesson, the learner should be able to:

- Describe physical properties of metals and alloys
- Explain uses of various metals and alloys
- Show confidence in applying knowledge of metals and alloys
- Answer assessment questions on metals and alloys
- Complete self-assessment checklist
- Identify properties and uses of metals and alloys
How are alloys important in day-to-day life?
- Mentor Integrated Science (pg. 32)
- Assessment items
- Digital resources
- Samples of metals and alloys
- Mentor Integrated Science (pg. 33)
- Water samples from different sources
- Containers for samples
- Charts
- Written tests - Oral questions - Observation
3 1
Mixtures, Elements and Compounds
Water hardness - Water sources
Water hardness - Colour and odour
By the end of the lesson, the learner should be able to:

- Identify different sources of water in the locality
- Compare characteristics of water from different sources
- Show interest in water sources in the environment
- Discuss different sources of water in the locality
- Compare characteristics of water from different sources
- Record findings in a table
Why is hard water preferred for drinking?
- Mentor Integrated Science (pg. 33)
- Water samples
- Digital resources
- Charts
- Mentor Integrated Science (pg. 34)
- Clear containers
- White paper
- Observation - Oral discussions - Written assignments
3 2
Mixtures, Elements and Compounds
Water hardness - Investigating color and odor
Water hardness - Boiling point
By the end of the lesson, the learner should be able to:

- Investigate the color and odor of different water samples
- Record observations on water characteristics
- Appreciate the importance of clean water
- Carry out experiments to test color and odor of water samples
- Record observations in a table
- Draw conclusions about water quality based on observations
Why is hard water preferred for drinking?
- Mentor Integrated Science (pg. 34)
- Water samples
- Clear containers
- White paper
- Worksheets
- Mentor Integrated Science (pg. 35)
- Thermometer
- Heat source
- Beaker
- Water
- Observation - Practical work - Written reports
3 3
Mixtures, Elements and Compounds
Water hardness - Hard and soft water
Water hardness - Differences
By the end of the lesson, the learner should be able to:

- Distinguish between hard and soft water
- Explain the difference in lathering ability
- Show interest in investigating water properties
- Compare lathering of soap in different water samples
- Distinguish between hard and soft water based on lathering
- Discuss differences between hard and soft water
Why is hard water preferred for drinking?
- Mentor Integrated Science (pg. 36)
- Soap
- Water samples
- Beakers
- Digital resources
- Mentor Integrated Science (pg. 37)
- Charts
- Observation - Practical work - Oral questions
3 4
Mixtures, Elements and Compounds
Water hardness - Advantages of soft water
Water hardness - Hard water advantages
Water hardness - Methods of softening
By the end of the lesson, the learner should be able to:

- Identify advantages of soft water
- Debate on uses of soft water
- Appreciate the value of soft water in certain applications
- Debate on advantages of soft water
- Discuss benefits of using soft water for cleaning
- Research advantages of soft water
Why is hard water preferred for drinking?
- Mentor Integrated Science (pg. 38)
- Digital resources
- Charts
- Debate materials
- Mentor Integrated Science (pg. 39)
- Research materials
- Mentor Integrated Science (pg. 40)
- Water samples
- Observation - Debate assessment - Written assignments
3 5
Mixtures, Elements and Compounds
Water hardness - Boiling method
Water hardness - Chemical method
By the end of the lesson, the learner should be able to:

- Demonstrate how to soften hard water by boiling
- Explain how boiling removes hardness
- Observe safety measures when using heat sources
- Carry out experiment to soften hard water by boiling
- Test lathering ability of water before and after boiling
- Explain observations from the experiment
Why is hard water preferred for drinking?
- Mentor Integrated Science (pg. 41)
- Hard water samples
- Heat source
- Beakers
- Soap
- Mentor Integrated Science (pg. 42)
- Washing soda
- Observation - Practical work - Written reports
4 1
Mixtures, Elements and Compounds
Water hardness - Distillation method
Water hardness - Applications
By the end of the lesson, the learner should be able to:

- Demonstrate how to soften hard water by distillation
- Explain how distillation removes hardness
- Observe safety measures during distillation
- Set up distillation apparatus
- Distill hard water and test the distillate
- Compare properties of hard water and distilled water
Why is hard water preferred for drinking?
- Mentor Integrated Science (pg. 44)
- Distillation apparatus
- Hard water samples
- Heat source
- Soap
- Mentor Integrated Science (pg. 45)
- Digital resources
- Charts
- Pictures of water applications
- Observation - Practical work - Written reports
4 2
Living Things and their Environment
Nutrition in plants - External structure of the leaf
Nutrition in plants - Functions of leaf parts
By the end of the lesson, the learner should be able to:

- Identify the external parts of a leaf
- Draw and label external parts of a leaf
- Show interest in exploring plant structures
- Observe pictures showing external structure of a leaf
- Identify external parts of the leaf from the pictures
- Discuss the functions of each external part of the leaf
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 49)
- Charts showing external structure of leaf
- Digital resources
- Fresh leaves
- Mentor Integrated Science (pg. 50)
- Observation - Oral questions - Drawings
4 3
Living Things and their Environment
Nutrition in plants - Observing leaf structures
Nutrition in plants - Leaf adaptations for photosynthesis
By the end of the lesson, the learner should be able to:

- Collect and observe different types of leaves
- Identify external parts of leaves using a hand lens
- Draw and label parts of leaves
- Walk around the school compound to collect leaf samples
- Use a hand lens to observe external parts of leaves
- Draw and label parts of leaves observed
- Compare leaves with those identified previously
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 50)
- Hand lens
- Fresh leaves
- Drawing materials
- Mentor Integrated Science (pg. 51)
- Digital resources
- Charts showing leaf adaptations
- Reference materials
- Observation - Practical work - Drawings
4 4
Living Things and their Environment
Nutrition in plants - Internal structure of the leaf
Nutrition in plants - Leaf tissues for photosynthesis
By the end of the lesson, the learner should be able to:

- Identify the internal parts of a leaf
- Describe the arrangement of tissues in a leaf
- Show curiosity in learning about internal leaf structures
- Observe a diagram showing internal structure of a leaf
- Identify the internal parts of the leaf
- Discuss the functions of each internal part of the leaf
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 52)
- Charts showing internal structure of leaf
- Digital resources
- Models
- Mentor Integrated Science (pg. 53)
- Charts showing internal leaf tissues
- Observation - Oral questions - Written assignments
4 5
Living Things and their Environment
Nutrition in plants - Internal adaptations for photosynthesis
Nutrition in plants - Structure of chloroplast
By the end of the lesson, the learner should be able to:

- Describe how internal leaf structures are adapted for photosynthesis
- Relate specific adaptations to photosynthetic functions
- Show interest in plant adaptations
- Discuss how internal leaf structures are adapted for photosynthesis
- Search for information about internal leaf adaptations
- Make summary notes on internal leaf adaptations
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 54)
- Digital resources
- Charts showing internal leaf adaptations
- Reference materials
- Mentor Integrated Science (pg. 55)
- Charts showing structure of chloroplast
- Models
- Observation - Written assignments - Oral presentations
5 1
Living Things and their Environment
Nutrition in plants - Chloroplast adaptations
Nutrition in plants - Process of photosynthesis
By the end of the lesson, the learner should be able to:

- Explain how chloroplasts are adapted for photosynthesis
- Identify chloroplast structures from photomicrographs
- Show interest in microscopic structures
- Study a photomicrograph of a chloroplast
- Identify parts of the chloroplast from the photomicrograph
- Discuss how chloroplasts are adapted for photosynthesis
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 56)
- Photomicrographs of chloroplasts
- Charts showing chloroplast structure
- Digital resources
- Mentor Integrated Science (pg. 57)
- Charts showing photosynthesis process
- Reference materials
- Observation - Written assignments - Oral presentations
5 2
Living Things and their Environment
Nutrition in plants - Conditions for photosynthesis
Nutrition in plants - Stages of photosynthesis
By the end of the lesson, the learner should be able to:

- Identify conditions necessary for photosynthesis
- Explain the role of each condition in photosynthesis
- Appreciate the complexity of photosynthesis
- Search for information on conditions necessary for photosynthesis
- Discuss the role of each condition in photosynthesis
- Make summary notes on conditions for photosynthesis
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 58)
- Charts showing conditions for photosynthesis
- Digital resources
- Reference materials
- Mentor Integrated Science (pg. 59)
- Charts showing stages of photosynthesis
- Observation - Written assignments - Oral presentations
5 3
Living Things and their Environment
Nutrition in plants - Testing for starch
Nutrition in plants - Light and photosynthesis
By the end of the lesson, the learner should be able to:

- Demonstrate the procedure for testing for starch in a leaf
- Explain why each step in the procedure is important
- Observe safety measures when carrying out experiments
- Set up an experiment to test for the presence of starch in a leaf
- Follow the correct procedure step by step
- Observe and record the results
- Explain why certain steps are necessary
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 60)
- Apparatus for testing starch in leaves
- Chemicals (iodine solution)
- Fresh leaves
- Heat source
- Mentor Integrated Science (pg. 61)
- Potted plants
- Aluminum foil/carbon paper
- Apparatus for testing starch
- Chemicals
- Observation - Practical work - Written reports
5 4
Living Things and their Environment
Nutrition in plants - Carbon (IV) oxide and photosynthesis
Nutrition in plants - Chlorophyll and photosynthesis
By the end of the lesson, the learner should be able to:

- Investigate whether carbon (IV) oxide is necessary for photosynthesis
- Control variables in an experiment
- Practice safety measures when conducting experiments
- Design an experiment to investigate the effect of carbon (IV) oxide on photosynthesis
- Set up the experiment with appropriate controls
- Record and analyze results
- Draw conclusions from the experiment
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 62)
- Potted plants
- Conical flasks with corks
- Potassium hydroxide solution
- Apparatus for testing starch
- Mentor Integrated Science (pg. 63)
- Variegated leaves
- Chemicals
- Heat source
- Observation - Practical work - Written reports
5 5
Living Things and their Environment
Nutrition in plants - Importance of photosynthesis
Nutrition in plants - Environmental impact of photosynthesis
By the end of the lesson, the learner should be able to:

- Explain the importance of photosynthesis in nature
- Relate photosynthesis to food production and oxygen release
- Appreciate the significance of photosynthesis
- Search for information on importance of photosynthesis
- Discuss how photosynthesis benefits plants, animals and the environment
- Make summary notes on importance of photosynthesis
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 64)
- Digital resources
- Charts showing importance of photosynthesis
- Reference materials
- Mentor Integrated Science (pg. 65)
- Charts showing carbon cycle
- Observation - Written assignments - Oral presentations
6 1
Living Things and their Environment
Nutrition in animals - Modes of nutrition in animals
Nutrition in animals - Parasitic mode of nutrition
Nutrition in animals - Saprophytic mode of nutrition
By the end of the lesson, the learner should be able to:

- Explain the meaning of nutrition in animals
- Identify different modes of nutrition in animals
- Appreciate the diversity of feeding mechanisms in animals
- Observe pictures of animals with different feeding mechanisms
- Discuss modes of nutrition in animals
- Categorize different animals based on how they feed
- Search for information on animal nutrition using digital devices or print materials
How do different animals feed?
- Mentor Integrated Science Grade 9 (pg. 73)
- Digital devices
- Pictures of animals with different feeding habits
- Mentor Integrated Science Grade 9 (pg. 74)
- Pictures of parasitic animals
- Pictures/videos of saprophytic organisms
- Observation - Oral questions - Written assignments - Group presentations
6 2
Living Things and their Environment
Nutrition in animals - Symbiotic mode of nutrition
Nutrition in animals - Holozoic mode of nutrition
By the end of the lesson, the learner should be able to:

- Explain symbiotic mode of nutrition
- Identify organisms that exhibit symbiotic relationships in feeding
- Appreciate the interdependence of organisms in nutrition
- Observe pictures of symbiotic relationships
- Discuss examples of symbiotic relationships in feeding
- Research on symbiotic relationships
- Create presentations on symbiotic relationships
How do different animals feed?
- Mentor Integrated Science Grade 9 (pg. 75)
- Digital devices
- Pictures of symbiotic relationships
- Pictures of animals with holozoic feeding
- Observation - Oral questions - Written assignments - Group presentations
6 3
Living Things and their Environment
Nutrition in animals - Types of teeth (structure)
Nutrition in animals - Types of teeth (functions)
By the end of the lesson, the learner should be able to:

- Identify different types of teeth
- Describe the structure of different types of teeth
- Appreciate the diversity in teeth structure
- Observe and draw different types of teeth
- Use models/charts to identify the structure of different types of teeth
- Discuss the structure and location of different types of teeth in the mouth
How is food digested in the human body?
- Mentor Integrated Science Grade 9 (pg. 76)
- Dental models or charts
- Digital devices
- Mentor Integrated Science Grade 9 (pg. 77)
- Observation - Drawing assessment - Oral questions - Written assignments
6 4
Living Things and their Environment
Nutrition in animals - Dentition in animals (homodont and heterodont)
Nutrition in animals - Dentition in carnivores
By the end of the lesson, the learner should be able to:

- Differentiate between homodont and heterodont dentition
- Classify animals based on their dentition
- Appreciate the diversity in animal dentition
- Observe pictures of different animal teeth
- Compare and contrast homodont and heterodont dentition
- Classify animals as either homodont or heterodont
- Research on examples of animals with different dentition types
How is food digested in the human body?
- Mentor Integrated Science Grade 9 (pg. 78)
- Pictures of animal teeth
- Digital devices
- Mentor Integrated Science Grade 9 (pg. 79)
- Pictures/models of carnivore teeth
- Observation - Oral questions - Classification exercises - Written assignments
6 5
Living Things and their Environment
Nutrition in animals - Dentition in herbivores
By the end of the lesson, the learner should be able to:

- Describe the dentition of herbivores
- Identify adaptations of herbivore teeth to their feeding habits
- Show interest in understanding herbivore dentition
- Observe pictures/models of herbivore teeth
- Discuss the adaptations of herbivore teeth to their feeding habits
- Research on examples of herbivores and their dentition
- Make presentations on herbivore dentition
How is food digested in the human body?
- Mentor Integrated Science Grade 9 (pg. 80)
- Pictures/models of herbivore teeth
- Digital devices
- Observation - Oral questions - Written assignments - Presentations
7 1
Living Things and their Environment
Nutrition in animals - Dentition in omnivores
By the end of the lesson, the learner should be able to:

- Describe the dentition of omnivores
- Identify adaptations of omnivore teeth to their feeding habits
- Show interest in understanding omnivore dentition
- Observe pictures/models of omnivore teeth
- Discuss the adaptations of omnivore teeth to their feeding habits
- Research on examples of omnivores and their dentition
- Make presentations on omnivore dentition
How is food digested in the human body?
- Mentor Integrated Science Grade 9 (pg. 81)
- Pictures/models of omnivore teeth
- Digital devices
- Observation - Oral questions - Written assignments - Presentations
7 2
Living Things and their Environment
Nutrition in animals - Process of digestion (ingestion)
By the end of the lesson, the learner should be able to:

- Explain the process of ingestion in human beings
- Describe the role of teeth and salivary glands in ingestion
- Appreciate the complexity of the digestive process
- Discuss the process of ingestion
- Using charts/models, identify structures involved in ingestion
- Demonstrate the role of teeth and saliva in ingestion
- Research on the process of ingestion
How is food digested in the human body?
- Mentor Integrated Science Grade 9 (pg. 82)
- Charts/models of the digestive system
- Digital devices
- Observation - Oral questions - Written assignments - Demonstrations
7 3
Living Things and their Environment
Nutrition in animals - Process of digestion (digestion)
By the end of the lesson, the learner should be able to:

- Explain the process of digestion in human beings
- Identify organs involved in digestion and their functions
- Appreciate the importance of proper digestion
- Discuss the process of digestion in different parts of the digestive system
- Using charts/models, identify organs involved in digestion
- Research on mechanical and chemical digestion
- Present findings to the class
How is food digested in the human body?
- Mentor Integrated Science Grade 9 (pg. 83)
- Charts/models of the digestive system
- Digital devices
- Observation - Oral questions - Written assignments - Presentations
7 4
Living Things and their Environment
Nutrition in animals - Process of digestion (absorption)
By the end of the lesson, the learner should be able to:

- Explain the process of absorption in human beings
- Identify structures involved in absorption and their adaptations
- Appreciate the efficiency of the absorption process
- Discuss the process of absorption in the small intestine
- Using charts/models, identify structures involved in absorption
- Research on the adaptations of the small intestine for absorption
- Present findings to the class
How is food digested in the human body?
- Mentor Integrated Science Grade 9 (pg. 83)
- Charts/models of the digestive system
- Digital devices
- Observation - Oral questions - Written assignments - Presentations
7 5
Living Things and their Environment
Nutrition in animals - Process of digestion (assimilation)
By the end of the lesson, the learner should be able to:

- Explain the process of assimilation in human beings
- Describe how absorbed nutrients are utilized in the body
- Value the importance of proper nutrition for body functions
- Discuss the process of assimilation
- Research on how different nutrients are used in the body
- Create presentations on the process of assimilation
- Discuss the importance of proper nutrition
How is food digested in the human body?
- Mentor Integrated Science Grade 9 (pg. 84)
- Charts of the circulatory system
- Digital devices
- Observation - Oral questions - Written assignments - Presentations
8

MID TERM ASSESSMENT

9

MID TERM BREAK

10 1
Living Things and their Environment
Nutrition in animals - Process of digestion (egestion)
By the end of the lesson, the learner should be able to:

- Explain the process of egestion in human beings
- Identify structures involved in egestion and their functions
- Appreciate the importance of proper waste elimination
- Discuss the process of egestion
- Using charts/models, identify structures involved in egestion
- Research on the importance of fiber in egestion
- Present findings to the class
How is food digested in the human body?
- Mentor Integrated Science Grade 9 (pg. 84)
- Charts/models of the large intestine
- Digital devices
- Observation - Oral questions - Written assignments - Presentations
10 2
Living Things and their Environment
Reproduction in plants - Parts of a flower
Reproduction in plants - Functions of parts of a flower
By the end of the lesson, the learner should be able to:

- Identify external parts of a flower
- Draw and label parts of a flower
- Appreciate the complexity of flower structure
- Collect and observe flowers from the school compound
- Identify and name the parts of the flowers
- Draw and label the parts of a flower
- Discuss the functions of the parts of a flower
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 86)
- Fresh flowers
- Hand lens
- Drawing materials
- Mentor Integrated Science Grade 9 (pg. 87)
- Flower models or charts
- Digital devices
- Observation - Drawing assessment - Oral questions - Written assignments
10 3
Living Things and their Environment
Reproduction in plants - Meaning of pollination
Reproduction in plants - Types of pollination (self-pollination)
By the end of the lesson, the learner should be able to:

- Explain the meaning of pollination
- Describe the importance of pollination in plant reproduction
- Appreciate the role of pollination in plant reproduction
- Discuss the meaning of pollination
- Watch videos on pollination process
- Research on the importance of pollination in plant reproduction
- Present findings to the class
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 88)
- Digital devices
- Videos on pollination
- Charts showing pollination
- Mentor Integrated Science Grade 9 (pg. 89)
- Charts showing self-pollination
- Observation - Oral questions - Written assignments - Group presentations
10 4
Living Things and their Environment
Reproduction in plants - Types of pollination (cross-pollination)
Reproduction in plants - Agents of pollination (insects)
Reproduction in plants - Agents of pollination (birds, other animals)
By the end of the lesson, the learner should be able to:

- Explain cross-pollination
- Identify plants that undergo cross-pollination
- Appreciate the advantages of cross-pollination
- Discuss cross-pollination
- Use diagrams/charts to illustrate cross-pollination
- Research on examples of plants that undergo cross-pollination
- Compare self-pollination and cross-pollination
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 89)
- Charts showing cross-pollination
- Digital devices
- Mentor Integrated Science Grade 9 (pg. 90)
- Pictures/videos of insect pollinators
- Pictures/videos of bird and animal pollinators
- Observation - Oral questions - Written assignments - Group presentations
10 5
Living Things and their Environment
Reproduction in plants - Agents of pollination (wind, water)
Reproduction in plants - Adaptations of flowers to insect pollination
By the end of the lesson, the learner should be able to:

- Identify wind and water as agents of pollination
- Explain how wind and water aid in pollination
- Show interest in various pollination mechanisms
- Observe pictures/videos of wind and water pollination
- Discuss how wind and water aid in pollination
- Research on examples of flowers pollinated by wind and water
- Present findings to class
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 91)
- Pictures/videos of wind and water pollination
- Digital devices
- Mentor Integrated Science Grade 9 (pg. 92)
- Fresh insect-pollinated flowers
- Pictures of insect-pollinated flowers
- Hand lens
- Observation - Oral questions - Written assignments - Group presentations
11 1
Living Things and their Environment
Reproduction in plants - Adaptations of flowers to wind pollination
By the end of the lesson, the learner should be able to:

- Identify adaptations of flowers to wind pollination
- Explain how these adaptations facilitate wind pollination
- Value the diversity in plant adaptations
- Observe wind-pollinated flowers
- Identify and discuss adaptations to wind pollination
- Compare insect-pollinated and wind-pollinated flowers
- Create presentations on adaptations to wind pollination
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 93)
- Fresh wind-pollinated flowers
- Pictures of wind-pollinated flowers
- Hand lens
- Observation - Oral questions - Written assignments - Group presentations
11 2
Living Things and their Environment
Reproduction in plants - Effects of agrochemicals on pollinating agents
By the end of the lesson, the learner should be able to:

- Explain the effects of agrochemicals on pollinating agents
- Describe how these effects impact plant reproduction
- Show concern for the impact of human activities on pollinators
- Research on the effects of agrochemicals on pollinating agents
- Discuss how these effects impact plant reproduction
- Debate on the use of agrochemicals and their effects on pollination
- Present findings to class
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 94)
- Digital devices
- Articles on effects of agrochemicals on pollinators
- Observation - Oral questions - Written assignments - Debate assessment
11 3
Living Things and their Environment
Reproduction in plants - Fertilization in flowering plants
By the end of the lesson, the learner should be able to:

- Explain the process of fertilization in flowering plants
- Describe the journey of pollen tube to the ovule
- Appreciate the complexity of plant reproduction
- Watch videos on fertilization in flowering plants
- Use diagrams/charts to illustrate the fertilization process
- Discuss the journey of the pollen tube to the ovule
- Create presentations on fertilization in flowering plants
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 95)
- Videos on fertilization in plants
- Charts showing fertilization process
- Digital devices
- Observation - Oral questions - Written assignments - Group presentations
11 4
Living Things and their Environment
Reproduction in plants - Seed formation in flowering plants
By the end of the lesson, the learner should be able to:

- Explain the process of seed formation in flowering plants
- Identify the changes that occur during seed formation
- Value the importance of seeds in plant reproduction
- Watch videos on seed formation
- Use diagrams/charts to illustrate seed formation
- Observe different stages of seed development if available
- Discuss the changes that occur during seed formation
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 96)
- Videos on seed formation
- Charts showing seed formation
- Samples of seeds at different developmental stages
- Observation - Oral questions - Written assignments - Drawing assessment
11 5
Living Things and their Environment
Reproduction in plants - Fruit formation in flowering plants
By the end of the lesson, the learner should be able to:

- Explain the process of fruit formation in flowering plants
- Identify the changes that occur during fruit formation
- Appreciate the role of fruits in plant reproduction
- Watch videos on fruit formation
- Use diagrams/charts to illustrate fruit formation
- Observe different stages of fruit development if available
- Discuss the changes that occur during fruit formation
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 97)
- Videos on fruit formation
- Charts showing fruit formation
- Samples of fruits at different developmental stages
- Observation - Oral questions - Written assignments - Drawing assessment
12 1
Living Things and their Environment
Reproduction in plants - Fruit and seed dispersal (meaning and importance)
By the end of the lesson, the learner should be able to:

- Explain the meaning of fruit and seed dispersal
- Describe the importance of fruit and seed dispersal
- Value the role of dispersal in plant reproduction
- Discuss the meaning of fruit and seed dispersal
- Research on the importance of fruit and seed dispersal
- Debate on what would happen if seeds were not dispersed
- Present findings to class
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 98)
- Digital devices
- Charts showing seed dispersal
- Observation - Oral questions - Written assignments - Debate assessment
12 2
Living Things and their Environment
Reproduction in plants - Modes of fruit and seed dispersal (animals)
By the end of the lesson, the learner should be able to:

- Explain animal dispersal of fruits and seeds
- Identify fruits and seeds dispersed by animals
- Appreciate the role of animals in plant reproduction
- Collect and observe fruits and seeds dispersed by animals
- Discuss the adaptations of these fruits and seeds for animal dispersal
- Research on examples of animal-dispersed fruits and seeds
- Create presentations on animal dispersal
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 99)
- Samples of animal-dispersed fruits and seeds
- Digital devices
- Pictures of animal dispersal
- Observation - Oral questions - Written assignments - Collection assessment
12 3
Living Things and their Environment
Reproduction in plants - Modes of fruit and seed dispersal (wind, water)
By the end of the lesson, the learner should be able to:

- Explain wind and water dispersal of fruits and seeds
- Identify fruits and seeds dispersed by wind and water
- Show interest in different dispersal mechanisms
- Collect and observe fruits and seeds dispersed by wind and water
- Discuss the adaptations of these fruits and seeds for wind and water dispersal
- Research on examples of wind and water dispersed fruits and seeds
- Create presentations on wind and water dispersal
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 100)
- Samples of wind and water-dispersed fruits and seeds
- Digital devices
- Pictures of wind and water dispersal
- Observation - Oral questions - Written assignments - Collection assessment
12 4
Living Things and their Environment
Reproduction in plants - Modes of fruit and seed dispersal (self-dispersal mechanisms)
By the end of the lesson, the learner should be able to:

- Explain self-dispersal mechanisms in fruits and seeds
- Identify fruits and seeds that use self-dispersal mechanisms
- Appreciate the diversity in dispersal mechanisms
- Observe fruits that use self-dispersal mechanisms
- Discuss the adaptations of these fruits and seeds for self-dispersal
- Research on examples of self-dispersed fruits and seeds
- Create presentations on self-dispersal mechanisms
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 101)
- Samples of self-dispersed fruits and seeds
- Digital devices
- Pictures of self-dispersal mechanisms
- Observation - Oral questions - Written assignments - Group presentations
12 5
Living Things and their Environment
Reproduction in plants - Adaptations of fruits and seeds for dispersal
Reproduction in plants - Role of flowers in nature
By the end of the lesson, the learner should be able to:

- Identify adaptations of fruits and seeds for different dispersal methods
- Categorize fruits and seeds based on their dispersal methods
- Value the relationship between structure and function
- Collect and observe different fruits and seeds
- Identify adaptations for different dispersal methods
- Categorize the fruits and seeds based on their dispersal methods
- Create presentations on adaptations for dispersal
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 102)
- Various fruit and seed samples
- Hand lens
- Sorting trays
- Mentor Integrated Science Grade 9 (pg. 105)
- Digital devices
- Pictures of different flowers and their roles
- Charts on flower roles in ecosystems
- Observation - Oral questions - Classification activities - Written assignments
13

END TERM ASSESSMENT

14

SCHOOL CLOSING


Your Name Comes Here


Download

Feedback