If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 6 |
Trigonometry
|
Pythagoras Theorem
Solutions of problems Using Pythagoras Theorem |
By the end of the
lesson, the learner
should be able to:
Derive Pythagoras Theorem |
Deriving Pythagoras Theorem
|
Chalkboard Charts Illustrating derived theorem
Charts illustrating Pythagoras theorem |
KLB BK2 Pg 120 Discovering secondary pg 67
|
|
2 | 7 |
Trigonometry
|
Application to real life Situation
|
By the end of the
lesson, the learner
should be able to:
Use the formula A = ?s(s-a)(s-b)(s-c) to solve problems in real life |
Solving problems in real life using the formula A = ?s(s-a)(s-b)(s-c)
|
Mathematical table
|
KLB BK2 Pg 159 Discovering secondary pg 67
|
|
2 | 8 |
Trigonometry
|
Trigonometry Tangent, sine and cosines
Trigonometric Table |
By the end of the
lesson, the learner
should be able to:
Define tangent, sine and cosine ratios from a right angles triangle |
Defining what a tangent, Cosine and sine are using a right angled triangle
|
Charts illustrating tangent, sine and cosine
Mathematical table |
KLB BK2 Pg 123,132,133 Discovering secondary pg 70
|
|
3 | 1-2 |
Trigonometry
|
Angles and sides of a right angled triangle
Establishing Relationship of sine and cosine of complimentary angles Sines and cosines of Complimentary angles |
By the end of the
lesson, the learner
should be able to:
Use the sine, cosine and tangent in calculating the length of a right angled triangle and also finding the angle given two sides and unknown angle The length can be obtained if one side is given and an angle Use the relationship of sine and cosine of complimentary angles in solving problems |
Using mathematical tables Finding the length using sine ratio Finding the length using Cosine and tangent ratio Finding the angle using Sine, cosine and tangent
Solving problems involving the sines and cosines of complimentary angles |
Mathematical table Charts Chalkboard
Chalkboards Chalkboard Charts illustrating the relationship of sines and cosines of complimentary angles |
KLB BK2 Pg 125, 139, 140 Discovering secondary pg
KLB BK2 Pg 145 |
|
3 | 3 |
Trigonometry
|
Relationship between tangent, sine and cosine
Trigonometric ratios of special angles 30, 45, 60 and 90 |
By the end of the
lesson, the learner
should be able to:
Relate the three trigonometric ratios, the sine, cosine and tangent |
Relating the three trigonometric ratios
|
Charts showing the three related trigonometric ratio
Charts showing isosceles right angled triangle Charts illustrating Equilateral triangle |
KLB BK2 Pg 145
|
|
3 | 4 |
Trigonometry
|
Application of Trigonometric ratios in solving problems
|
By the end of the
lesson, the learner
should be able to:
Solve trigonometric problems without using tables |
Solving trigonometric problems of special angles
|
Chalkboard
|
KLB BK2 Pg 148
|
|
3 | 5 |
Trigonometry
|
Logarithms of Sines
Logarithms of cosines And tangents |
By the end of the
lesson, the learner
should be able to:
Read the logarithms of sines |
Solving problems by reading logarithm table of sines
|
Chalkboard Mathematical tables
Chalkboard Mathematical table |
KLB BK2 Pg 149
|
|
3 | 6 |
Trigonometry
|
Reading tables of logarithms of sines, cosines and tangents
|
By the end of the
lesson, the learner
should be able to:
Read the logarithms of sines, cosines and tangents from tables |
Solving problems through reading the table of logarithm of sines, cosines and tangents
|
Chalkboard Mathematical table
|
KLB BK2 Pg 149-152
|
|
3 | 7 |
Trigonometry
|
Application of trigonometry to real life situations
Area of a triangle Area of a triangle given the base and height (A = ? bh) |
By the end of the
lesson, the learner
should be able to:
Solve problems in real life using trigonometry |
Solving problems using trigonometry in real life
|
Mathematical table
Chart illustrating worked problem Chalkboard |
KLB BK2 Pg 153-154
|
|
3 | 8 |
Trigonometry
|
Area of a triangle using the formula (A = ? absin?)
|
By the end of the
lesson, the learner
should be able to:
- Derive the formula ? absinc - Using the formula derived in calculating the area of a triangle given two sides and an included angle |
Deriving the formula ? absinc Using the formula to calculate the area of a triangle given two sides and an included angle
|
Charts illustrating a triangle with two sides and an included angle Charts showing derived formula
|
KLB BK2 Pg 156
|
|
4 | 1-2 |
Trigonometry
|
Area of a triangle using the formula A = ?s(s-a)(s-b)(s-c)
Area of Quadrilateral and Polygons Area of a square, rectangle, rhombus, parallelogram and trapezium Area of a kite Area of other polygons (regular polygon) e.g. Pentagon |
By the end of the
lesson, the learner
should be able to:
Solve problems on the area of a triangle Given three sizes using the formula A = ?s(s-a)(s-b)(s-c) Find the area of a kite |
Solving problems on the area of triangle given three sides of a triangle
Calculating the area of a Kite |
Charts illustrating a triangle with three sides Charts illustrating a worked example i.e. mathematical table
Charts illustrating formula used in calculating the areas of the quadrilateral Model of a kite Mathematical table Charts illustrating Polygons |
KLB BK2 Pg 157-158
KLB BK2 Pg 163 |
|
4 | 3 |
Trigonometry
|
Area of irregular Polygon
|
By the end of the
lesson, the learner
should be able to:
Find the area of irregular polygons |
Finding the area of irregular polygons
|
Charts illustrating various irregular polygons Polygonal shapes
|
KLB BK2 Pg 166
|
|
4 | 4 |
Trigonometry
|
Area of part of a circle Area of a sector (minor sector and a major sector)
Defining a segment of a circle Finding the area of a segment of a circle |
By the end of the
lesson, the learner
should be able to:
- Find the area of a sector given the angle and the radius of a minor sector Calculate the area of a major sector of a circle |
Finding the area of a minor and a major sector of a circle
|
Charts illustrating sectors
Chart illustrating a Segment |
KLB BK 2 Pg 167
|
|
4 | 5 |
Trigonometry
|
Area of a common region between two circles given the angles and the radii
|
By the end of the
lesson, the learner
should be able to:
Find the area of common region between two circles given the angles ? Education Plus Agencies |
Calculating the area of a segment
|
Charts illustrating common region between the circles Use of a mathematical table during calculation
|
KLB BK 2 Pg 175
|
|
4 | 6 |
Trigonometry
|
Area of a common region between two circles given only the radii of the two circles and a common chord
Surface area of solids Surface area of prisms Cylinder (ii) Triangular prism (iii) Hexagonal prism |
By the end of the
lesson, the learner
should be able to:
Calculate the area of common region between two circle given the radii of the two intersecting circles and the length of a common chord of the two circles |
Finding the area of a common region between two intersecting
|
Charts illustrating common region between two intersecting circles
Models of cylinder, triangular and hexagonal prisms |
KLB BK 2 Pg 176
|
|
4 | 7 |
Trigonometry
|
Area of a square based Pyramid
|
By the end of the
lesson, the learner
should be able to:
Find the total surface area of a square based pyramid |
Finding the surface area of a square based pyramid
|
Models of a square based pyramid
|
KLB BK 2 Pg 178
|
|
4 | 8 |
Trigonometry
|
Surface area of a Rectangular based Pyramid
Surface area of a cone using the formula A = ?r2 + ?rl |
By the end of the
lesson, the learner
should be able to:
Find the surface area of a rectangular based pyramid |
Finding the surface area of a rectangular based pyramid
|
Models of a Rectangular based pyramid
Models of a cone |
KLB BK 2 Pg 179-180
|
|
5 | 1-2 |
Trigonometry
|
Surface area of a frustrum of a cone and a pyramid
Finding the surface area of a sphere Surface area of a Hemispheres |
By the end of the
lesson, the learner
should be able to:
Find the surface area of a frustrum of a cone and pyramid Find the surface area of a hemisphere |
Finding the surface area of a frustrum of a cone and a pyramid
Finding the surface area of a hemisphere |
Models of frustrum of a cone and a pyramid
Models of a sphere Charts illustrating formula for finding the surface area of a sphere Models of a hemisphere |
KLB BK 2 Pg 182
KLB BK 2 Pg 184 |
|
5 | 3 |
Trigonometry
|
Volume of Solids Volume of prism (triangular based prism)
Volume of prism (hexagonal based prism) given the sides and angle |
By the end of the
lesson, the learner
should be able to:
Find the volume of a triangular based prism |
Finding the volume of a triangular based prism
|
Models of a triangular based prism
Models of hexagonal based prism |
KLB BK 2 Pg 186
|
|
5 | 4 |
Trigonometry
|
Volume of a pyramid (square based and rectangular based)
|
By the end of the
lesson, the learner
should be able to:
Find the volume of a square based pyramid and rectangular based pyramid |
Finding the surface area of the base Applying the formula V=?x base area x height to get the volume of the pyramids (square and rectangular based)
|
Models of square and Rectangular based Pyramids
|
KLB BK 2 Pg 189-190
|
|
5 | 5 |
Trigonometry
|
Volume of a cone
Volume of a frustrum of a cone |
By the end of the
lesson, the learner
should be able to:
Find the volume of a cone |
Finding the volume of a cone
|
Model of a cone
Models of a frustrum of a cone |
KLB BK 2 Pg 191
|
|
5 | 6 |
Trigonometry
|
Volume of a frustrum of a pyramid
|
By the end of the
lesson, the learner
should be able to:
Find the volume of a frustrum of a Pyramid |
Finding volume of a full pyramid Finding volume of cutoff pyramid Find volume of the remaining fig (frustrum) by subtracting i.e. Vf = (V ? v)
|
Models of frustrum of a pyramid
|
KLB BK 2 Pg 194
|
|
5 | 7 |
Trigonometry
|
Volume of a sphere (v = 4/3?r3)
Volume of a Hemisphere {(v = ? (4/3?r3)} |
By the end of the
lesson, the learner
should be able to:
Find the volume of sphere given the radius of the sphere |
Finding the volume of a Sphere
|
Model of a sphere Mathematical table
Models of hemisphere |
KLB BK 2 Pg 195
|
|
5 | 8 |
Trigonometry
Trigonometric Ratios |
Application of area of triangles to real life
Tangent of an angle |
By the end of the
lesson, the learner
should be able to:
Use the knowledge of the area of triangles in solving problems in real life situation |
Solving problems in real life using the knowledge of the area of triangle
|
Mathematical table Chart illustrating formula used
Protractor Ruler Right corners Mathematical tables |
KLB BK 2 Pg 159
|
|
6 | 1-2 |
Trigonometric Ratios
|
Tangent of an angle
Using tangents in calculations Application of tangents |
By the end of the
lesson, the learner
should be able to:
find the tangent of an angle from tables calculate the size of an angle given two sides and an angle from tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
6 | 3 |
Trigonometric Ratios
|
The sine of an angle
|
By the end of the
lesson, the learner
should be able to:
find the sine of an angle by calculations and through tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
6 | 4 |
Trigonometric Ratios
|
The cosine of an angle
Application of sine and cosine |
By the end of the
lesson, the learner
should be able to:
find the cosine of an angle by calculations and through tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
6 | 5 |
Trigonometric Ratios
|
Complementary angles
|
By the end of the
lesson, the learner
should be able to:
define complementary angles. Work out sines of an angle given the cosine of its complimentary and vice versa |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
6 | 6 |
Trigonometric Ratios
|
Special angles
Application of Special angles |
By the end of the
lesson, the learner
should be able to:
find the sine, cos, and tan of 300,600,450,00,900, without using tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
6 | 7 |
Trigonometric Ratios
|
Logarithms of sines, cosines and tangents
|
By the end of the
lesson, the learner
should be able to:
solve problems using logarithms of sines cosines and tangents |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
6 | 8 |
Trigonometric Ratios
|
Relationship between sin, cos and tan
Application to real life situation |
By the end of the
lesson, the learner
should be able to:
relate sin, cos and tan that is tan?=sin? cos? Solve problems using the relationship |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
7 | 1-2 |
Trigonometric Ratios
Area of A Triangle |
Problem solving
Area = Solve problems involving = |
By the end of the
lesson, the learner
should be able to:
solve problems on trigonometry solve problems involving area of triangles using the formula Area = |
Problem solving
Discussions Drawing triangles Measuring lengths/angles Calculating area |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
KLB Maths Bk2 Pg. 155-157 |
|
7 | 3 |
Area of A Triangle
|
A =?s(s-a) (s-b) (s-c)
Problem solving |
By the end of the
lesson, the learner
should be able to:
find the area of a triangle given the three sides |
Discussions
Drawing triangles Measuring lengths/angles Calculating area |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 155-157
|
|
7 | 4 |
Area of Quadrilaterals
|
Area of parallelogram
|
By the end of the
lesson, the learner
should be able to:
find the area of quadrilaterals like trapeziums, parallelogram etc. by dividing the shape of triangles |
Drawing trapeziums/polygons
Measuring lengths/angles Reading mathematical tables Discussions |
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables |
KLB Maths Bk2 Pg. 160
|
|
7 | 5 |
Area of Quadrilaterals
|
Area of Rhombus
Area of trapezium and kite |
By the end of the
lesson, the learner
should be able to:
find the area of a regular polygon. |
Drawing trapeziums/polygons
Measuring lengths/angles Reading mathematical tables Discussions |
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables |
KLB Maths Bk2 Pg. 161
|
|
7 | 6 |
Area of Quadrilaterals
|
Area of regular polygons
|
By the end of the
lesson, the learner
should be able to:
find the area of a regular polygon by using the formula A= |
Drawing trapeziums/polygons
Measuring lengths/angles Reading mathematical tables Discussions |
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables Chalkboard illustrations |
KLB Maths Bk2 Pg. 119-122
|
|
7 | 7 |
Area of Quadrilaterals
Area of Part of a Circle |
Problem solving
Area of a sector |
By the end of the
lesson, the learner
should be able to:
solve problems on area of quadrilaterals and other polygons |
Learners solve problems
|
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables Circles Chart illustrating the area of a sector |
KLB Maths Bk2 Pg. 165-166
|
|
7 | 8 |
Area of Part of a Circle
|
Area of a segment
Common region between two circles |
By the end of the
lesson, the learner
should be able to:
find area of a segment |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a minor segment |
KLB Maths Bk2 Pg. 167-169
|
|
8 | 1-2 |
Area of Part of a Circle
Area of Part of a Circle Surface Area of Solids |
Common region between two circles
Problem solving Surface area of prisms |
By the end of the
lesson, the learner
should be able to:
find the area of the common region between two circles and solve problems related to that solve problems involving the area of part of a circle |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a minor segment Circles Chart illustrating the area of a minor segment Chalkboard illustrations Prism Chalkboard illustrations |
KLB Maths Bk2 Pg. 167-169
|
|
8 | 3 |
Surface Area of Solids
|
Surface area of pyramid
|
By the end of the
lesson, the learner
should be able to:
find the surface area of a pyramid |
Drawing pyramids
Measuring lengths/ angles Opening pyramids to form nets Discussions Calculating area |
Pyramids with square base, rectangular base, triangular base
|
KLB Maths Bk2 Pg. 178
|
|
8 | 4 |
Surface Area of Solids
|
Surface area of a cone
Surface area of frustrum with circular base |
By the end of the
lesson, the learner
should be able to:
find the surface area of a cone |
Drawing cones/frustums
Making cones/frustums Measuring lengths/ angles Discussions |
Cone
Chart illustrating the surface area of a frustrum |
KLB Maths Bk2 Pg. 180
KLBMathematics Bk2 Discovering Secondary Mathematics Bk2 |
|
8 | 5 |
Surface Area of Solids
|
Surface area of frustrum with square base
|
By the end of the
lesson, the learner
should be able to:
find the surface area of frustrum with square base |
Drawing cones/frustums
Making cones/frustums Measuring lengths/ angles Discussions Learners find the surface area |
Chart illustrating frustrum with a square base
|
KLB Maths Bk2 Pg. 181-183
|
|
8 | 6 |
Surface Area of Solids
|
Surface area of frustrum with rectangular base
Surface area of spheres |
By the end of the
lesson, the learner
should be able to:
find the surface area of frustrum with rectangular base |
Drawing cones/frustums
Making cones/frustums Measuring lengths/ angles Discussions |
Chart illustrating frustrum with a rectangular base
Chalkboard illustrations |
KLB Maths Bk2 Pg. 181-183
|
|
8 | 7 |
Surface Area of Solids
|
Problem solving
|
By the end of the
lesson, the learner
should be able to:
solve problems on surface area of solids |
Learners solve problems
|
Past paper questions
|
KLB Maths Bk2 Pg. 183
|
|
8 | 8 |
Volume of Solids
|
Volume of prism
Volume of pyramid |
By the end of the
lesson, the learner
should be able to:
find the volume of a prism |
Identifying prisms
Identifying the cross-sectional area Drawing/sketching prisms |
Prism
Pyramid |
KLB Maths Bk2 Pg. 186-188
|
|
9 |
Week 9. Exam and half term |
|||||||
10 | 1-2 |
Volume of Solids
|
Volume of a cone
Volume of a sphere Volume of frustrum |
By the end of the
lesson, the learner
should be able to:
find the volume of a cone find the volume of a frustrum with a circular base |
Making cones/frustums
Opening cones/frustums to form nets |
Cone
Sphere Frustrum with circular base |
KLB Maths Bk2 Pg. 191
KLB Maths Bk2 Pg. 192-193 |
|
10 | 3 |
Volume of Solids
|
Volume of frustrum with a square base
Volume of frustrum with a rectangular base |
By the end of the
lesson, the learner
should be able to:
find the volume of a frustrum with a square base |
Making cones/frustums
Opening cones/frustums to form nets |
Frustrum with square base
Frustrum with rectangular base |
KLB Maths Bk2 Pg. 192-193
|
|
10 | 4 |
Volume of Solids
|
Application to real life situation
|
By the end of the
lesson, the learner
should be able to:
apply the knowledge of volume of solids to real life situations. |
Making cones/frustums
Opening cones/frustums to form nets |
Models of pyramids, prism, cones and spheres
|
KLB Maths Bk2 Pg. 193-194
|
|
10 | 5 |
Volume of Solids
Linear Motion |
Problem solving
Displacement, velocity, speed and acceleration |
By the end of the
lesson, the learner
should be able to:
solve problems on volume of solids |
Making cones/frustums
Opening cones/frustums to form nets |
Past paper questions
Graph papers Stones Pieces of paper |
KLB Maths Bk2 Pg. 196
|
|
10 | 6 |
Linear Motion
|
Distinguishing terms
|
By the end of the
lesson, the learner
should be able to:
distinguish between distance and displacement, speed and velocity |
Plotting graphs
Drawing graphs |
Graph papers
Stones Pieces of paper |
KLB Maths Bk2 Pg. 228-238
|
|
10 | 7 |
Linear Motion
|
Distinguishing velocity and acceleration
Distance time graphs |
By the end of the
lesson, the learner
should be able to:
determine velocity and acceleration |
Learners determine velocity and acceleration
Plotting graphs Drawing graphs |
Graph papers
Stones Pieces of paper |
KLB Maths Bk2 Pg. 228-238
|
|
10 | 8 |
Linear Motion
|
Interpret the velocity time graph
Interpreting graphs |
By the end of the
lesson, the learner
should be able to:
interpret a velocity time graph |
Learners interpret a velocity time graph
|
Drawn graphs
|
KLB
Maths Bk2 Pg.333 |
|
11 | 1-2 |
Linear Motion
Linear Motion Vectors |
Relative speed (objects moving in the same direction)
Problem solving Definition and Representation of vectors |
By the end of the
lesson, the learner
should be able to:
solve problems on objects moving in different directions solve problems on linear motion |
Teacher/pupil discussion
Question answer method |
Real life situation
Chalkboard illustrations Past paper questions 1x2 matrices Graph papers Square boards Ruler |
KLB
Maths Bk2 Pg.329 KLB Maths Bk2 Pg.330 |
|
11 | 3 |
Vectors
|
Equivalent vectors
|
By the end of the
lesson, the learner
should be able to:
identify equivalent vectors |
Writing position vectors
Adding/subtracting numbers Squaring and getting the square root of numbers |
1x2 matrices
Graph papers Square boards Ruler |
KLB Maths Bk2 Pg. 285
|
|
11 | 4 |
Vectors
|
Addition of vectors
Multiplication of vectors |
By the end of the
lesson, the learner
should be able to:
add vectors |
Writing position vectors
Adding/subtracting numbers Squaring and getting the square root of numbers |
1x2 matrices
Graph papers Square boards Ruler |
KLB Maths Bk2 Pg. 286-289
|
|
11 | 5 |
Vectors
|
Position vectors
|
By the end of the
lesson, the learner
should be able to:
define a position vector illustrate position vectors on a Cartesian plane |
Writing position vectors
Adding/subtracting numbers Squaring and getting the square root of numbers |
1x2 matrices
Graph papers Square boards Ruler |
KLB Maths Bk2 Pg.298
|
|
11 | 6 |
Vectors
|
Column vector
Magnitude of a vector |
By the end of the
lesson, the learner
should be able to:
write a vector as a column vector |
Writing position vectors
Adding/subtracting numbers Squaring and getting the square root of numbers |
1x2 matrices
Graph papers Square boards Ruler |
KLB Maths Bk2 Pg. 296-297
|
|
11 | 7 |
Vectors
|
Mid - point
Translation vector |
By the end of the
lesson, the learner
should be able to:
calculate the midpoint of a vector |
Writing position vectors
Adding/subtracting numbers Squaring and getting the square root of numbers |
1x2 matrices
Graph papers Square boards Ruler |
KLB Maths Bk2 Pg. 302
|
|
11 | 8 |
Linear Inequalities
|
Inequalities symbols
|
By the end of the
lesson, the learner
should be able to:
identify and use inequality symbols |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers |
KLB Maths Bk2 Pg. 213-224
|
|
12 | 1-2 |
Linear Inequalities
|
Number line
Inequalities in one unknown Graphical representation |
By the end of the
lesson, the learner
should be able to:
illustrate inequalities on a number line represent linear inequalities in one unknown graphically |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers Number lines Graph papers Square boards Negative and positive numbers |
KLB Maths Bk2 Pg. 213-224
|
|
12 | 3 |
Linear Inequalities
|
Graphical solutions of simultaneous linear inequalities
|
By the end of the
lesson, the learner
should be able to:
solve the linear inequalities in two unknowns graphically |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers |
KLB Maths Bk2 Pg. 213-224
|
|
12 | 4 |
Linear Inequalities
|
Area of the wanted region
|
By the end of the
lesson, the learner
should be able to:
calculate the area of the wanted region |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers |
KLB Maths Bk2 Pg. 213-224
|
|
12 | 5 |
Linear Inequalities
|
Inequalities from inequality graphs
Problem solving. |
By the end of the
lesson, the learner
should be able to:
form simple linear inequalities from inequality graphs |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers |
KLB Maths Bk2 Pg. 213-224
|
|
12 | 6 |
Angle Properties of a Circle
|
Arc chord segment
|
By the end of the
lesson, the learner
should be able to:
identify an arc, chord and segment |
Discussions
Drawing circles Measuring radii/ diameters/angles Identifying the parts of a circle |
Chart illustrating arc chord and segment
|
KLB Maths Bk2 Pg. 264-278
|
|
12 | 7 |
Angle Properties of a Circle
|
Angles subtended by the same arc in the same segment
Angle at the centre and at the circumference |
By the end of the
lesson, the learner
should be able to:
relate and compute angles subtended by an arc of a circle at the circumference |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Chart illustrating Angles subtended by the same arc in same segment are equal
Chart illustrating Angles subtended at the centre by an arc and one subtended at the circumference |
KLB Maths Bk2 Pg. 264-278
|
|
12 | 8 |
Angle Properties of a Circle
|
Angles subtended by the diameter at the circumference
Cyclic quadrilateral |
By the end of the
lesson, the learner
should be able to:
state the angle in the semi-circle |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Circles showing the
different parts |
KLB Maths Bk2 Pg. 264-278
|
|
13 | 1-2 |
Angle Properties of a Circle
|
Cyclic quadrilateral
Exterior angle property Problem solving |
By the end of the
lesson, the learner
should be able to:
find and compute angles of a cyclic quadrilateral apply the exterior angle property |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Circles showing the
different parts Circles showing the different parts different parts Past paper questions |
KLB Maths Bk2 Pg. 264-278
|
|
13 | 3 |
Angle Properties of a Circle
|
Problem solving
|
By the end of the
lesson, the learner
should be able to:
state all the properties and use them selectively to solve missing angles. |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Circles showing the
different parts Past paper questions |
KLB Maths Bk2 Pg. 264-278
|
Your Name Comes Here