If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1 |
STRUCTURE & BONDING
|
Chemical bonds.
Ionic bond.
|
By the end of the
lesson, the learner
should be able to:
Describe role of valence electrons in determining chemical bonding. Explain formation of ionic bonding. |
Q/A: Review valence electrons of atoms of elements in groups I, II, III, VII and VIII.
Q/A: Review group I and group VII elements. Discuss formation of ionic bond. |
text book
|
K.L.B. BOOK IIP54
PP 57-58 |
|
2 | 2 |
STRUCTURE & BONDING
|
Ionic bond representation.
|
By the end of the
lesson, the learner
should be able to:
Use dot and cross diagrams to represent ionic bonding. |
Drawing diagrams of ionic bonds.
|
Chart- dot and cross diagrams.
Models for bonding. |
K.L.B. BOOK II P. 58
|
|
2 | 3-4 |
STRUCTURE & BONDING
|
Grant ionic structures.
Physical properties of ionic compounds. |
By the end of the
lesson, the learner
should be able to:
Describe the crystalline ionic compound. Give examples of ionic substances. Describe physical properties of ionic compounds. Explain the differences in the physical properties of ionic compounds. |
Discuss the group ionic structures of NaCl.
Teacher gives examples of other ionic substances: KNO3, potassium bromide, Ca (NO3)2, sodium iodide. Analyse tabulated comparative physical properties of ionic compounds. Teacher asks probing questions. |
Giant sodium chloride model.
text book |
K.L.B. BOOK II PP 56-58
K.L.B. BOOK IIPP 58-59 |
|
2 | 5 |
STRUCTURE & BONDING
|
Covalent bond.
|
By the end of the
lesson, the learner
should be able to:
Explain the formation of covalent bond Use dot and cross diagrams to represent covalent bond. |
Exposition: Shared pair of electrons in a hydrogen molecule, H2O, NH3, Cl2, and CO2.
Drawing of dot-and-cross diagrams of covalent bonds. |
text book
|
K.L.B. BOOK II PP 60-63
|
|
3 | 1 |
STRUCTURE & BONDING
|
Co-ordinate bond.
|
By the end of the
lesson, the learner
should be able to:
To describe the co-ordinate bond To represent co-ordinate bond diagrammatically. |
Exposition- teacher explains the nature of co-ordinate bond.
Students represent co-ordinate bond diagrammatically. |
text book
|
K.L.B. BOOK II P 65
|
|
3 | 2 |
STRUCTURE & BONDING
|
Molecular structure.
|
By the end of the
lesson, the learner
should be able to:
To describe the molecular structure. To give examples of substance exhibiting molecular structure |
Discussion ? To explain formation of the giant structure and give examples of substance exhibiting molecular structure.
|
text book
|
K.L.B. BOOK IIP 65
|
|
3 | 3-4 |
STRUCTURE & BONDING
|
Trend in physical properties of molecular structures.
|
By the end of the
lesson, the learner
should be able to:
To describe van- der -waals forces. To explain the trend in physical properties of molecular structures. |
Discuss comparative physical properties of substances. exhibiting molecular structure.
Explain variation in the physical properties. |
Sugar, naphthalene, iodine rhombic sulphur.
|
K.L.B. BOOK IIP 65
|
|
3 | 5 |
STRUCTURE & BONDING
|
Giant atomic structure in diamond.
|
By the end of the
lesson, the learner
should be able to:
To describe giant atomic structure in diamond. To state uses of diamond. |
Diagrammatic representation of diamond.
Discuss uses of diamond. |
Diagrams in textbooks.
|
K.L.B. BOOK II P 69
|
|
4 | 1 |
STRUCTURE & BONDING
|
Giant atomic structure in graphite.
|
By the end of the
lesson, the learner
should be able to:
To describe giant atomic structure in graphite. To state uses of graphite. |
Diagrammatic representation of graphite.
Discuss uses of graphite. |
Diagrams in textbooks.
|
K.L.B. BOOK II pp 69
|
|
4 | 2 |
STRUCTURE & BONDING
|
Metallic bond.
Uses of some metals.
|
By the end of the
lesson, the learner
should be able to:
To describe mutual electronic forces between electrons and nuclei. To describe metallic bond. To compare physical properties of metals. To state uses of some metals. |
Discussion:
Detailed analysis of comparative physical properties of metals and their uses. Probing questions & brief explanations. |
text book
|
K.L.B. BOOK IIP 70
|
|
4 | 3-4 |
SALTS
|
Types of salts.
Solubility of salts in water. |
By the end of the
lesson, the learner
should be able to:
Define a salt. Describe various types of salts and give several examples in each case. To test solubility of various salts in cold water/warm water. |
Descriptive approach. Teacher exposes new concepts.
Class experiments- Dissolve salts in 5 cc of water. Record the solubility in a table, Analyse the results. |
text book
Sulphates, chlorides, nitrates, carbonates of various metals. |
K.L.B. BOOK II P. 91
K.L.B. BOOK II PP. 92-93 |
|
4 | 5 |
SALTS
|
Solubility of salts in water.
|
By the end of the
lesson, the learner
should be able to:
To test solubility of various salts in cold water/warm water. |
Class experiments- Dissolve salts in 5 cc of water.
Record the solubility in a table, Analyse the results. |
Sulphates, chlorides, nitrates, carbonates of various metals.
|
K.L.B. BOOK II PP. 92-93
|
|
5 | 1 |
SALTS
|
Solubility of bases in water.
|
By the end of the
lesson, the learner
should be able to:
To test solubility of various bases in water. To carry out litmus test on the resulting solutions. |
Class experiments- Dissolve salts in 5cc of water.
Record the solubility in a table, Carry out litmus tests. Discuss the results. |
Oxides, hydroxides, of various metals, litmus papers.
|
K.L.B. BOOK IIPP. 94-95
|
|
5 | 2 |
SALTS
|
Solubility of bases in water.
|
By the end of the
lesson, the learner
should be able to:
To test solubility of various bases in water. To carry out litmus test on the resulting solutions. |
Class experiments- Dissolve salts in 5cc of water.
Record the solubility in a table, Carry out litmus tests. Discuss the results. |
Oxides, hydroxides, of various metals, litmus papers.
|
K.L.B. BOOK IIPP. 94-95
|
|
5 | 3-4 |
SALTS
|
Methods of preparing various salts.
|
By the end of the
lesson, the learner
should be able to:
To describe various methods of preparing some salts. |
Experimental and descriptive treatments of preparation of salts e.g. ZnSO4, CuSO4, NaCl and Pb(NO3)2.
|
CuO, H2SO4, HCl, NaOH, PbCO3, dil HNO3.
|
K.L.B. BOOK II pp96
|
|
5 | 5 |
SALTS
|
Direct synthesis of a salts.
|
By the end of the
lesson, the learner
should be able to:
To describe direct synthesis of a salt. To write balanced equations for the reactions. |
Group experiments- preparation of iron (II) sulphide by direct synthesis.
Give other examples of salts prepared by direct synthesis. Students write down corresponding balanced equations. |
Iron,
Sulphur |
K.L.B. BOOK II P. 104
|
|
6 | 1 |
SALTS
|
Ionic equations.
|
By the end of the
lesson, the learner
should be able to:
To identify spectator ions in double decomposition reactions. To write ionic equations correctly. |
Q/A: Ions present in given reactants.
Deduce the products of double decomposition reactions. Give examples of equations. Supervised practice. |
PbNO3, MgSO4 solutions.
|
K.L.B. BOOK II
|
|
6 | 2 |
SALTS
|
Ionic equations.
|
By the end of the
lesson, the learner
should be able to:
To identify spectator ions in double decomposition reactions. To write ionic equations correctly. |
Q/A: Ions present in given reactants.
Deduce the products of double decomposition reactions. Give examples of equations. Supervised practice. |
PbNO3, MgSO4 solutions.
|
K.L.B. BOOK II
|
|
6 | 3-4 |
SALTS
|
Ionic equations.
Effects of heat on carbonates. |
By the end of the
lesson, the learner
should be able to:
To identify spectator ions in double decomposition reactions. To write ionic equations correctly. To state effects of heat on carbonates. To predict products resulting from heating metal carbonates. |
Q/A: Ions present in given reactants.
Deduce the products of double decomposition reactions. Give examples of equations. Supervised practice. Group experiments- To investigate effects of heat on Na2CO3, K2CO3, CaCO3, ZnCO3, PbCO3, e.t.c. Observe various colour changes before, during and after heating. Write equations for the reactions. |
PbNO3, MgSO4 solutions.
Various carbonates. |
K.L.B. BOOK II
K.L.B. BOOK II PP. 108-109 |
|
6 | 5 |
SALTS
|
Effects of heat on nitrates.
|
By the end of the
lesson, the learner
should be able to:
To state effects of heat on nitrates. To predict products resulting from heating metal nitrates. |
Group experiments- To investigate effects of heat on various metal nitrates.
Observe various colour changes before, during and after heating. Write equations for the reactions. |
Common metal nitrates.
|
K.L.B. BOOK II PP. 110-111
|
|
7 | 1 |
SALTS
|
Effects of heat on sulphates.
|
By the end of the
lesson, the learner
should be able to:
To state effects of heat on sulphates. To predict products results from heating metal sulphates. |
Group experiments- To investigate effects of heat on various sulphates.
Observe various colour changes before, during and after heating. Write equations for the reactions. |
Common sulphates.
|
K.L.B. BOOK II P. 113
|
|
7 | 2 |
SALTS
|
Hygroscopy, Deliquescence and Efflorescence.
|
By the end of the
lesson, the learner
should be able to:
To define hygroscopic deliquescent and efflorescent salts. To give examples of hygroscopic deliquescent and efflorescent salts. |
Prepare a sample of various salts.
Expose them to the atmosphere overnight. Students classify the salts as hygroscopic, deliquescent and / or efflorescent. |
|
K.L.B. BOOK II P. 114
|
|
7 | 3-4 |
SALTS
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES. |
Uses of salts.
Electrical conductivity. |
By the end of the
lesson, the learner
should be able to:
To state uses of salts To test for electrical conductivities of substances. |
Teacher elucidates uses of salts.
Group experiments- to identify conductors and non-conductors. Explain the difference in (non) conductivities. |
Various solids, bulb, battery, & wires. |
K.L.B. BOOK II P. 114
K.L.B. BOOK II PP. 118-119 |
|
7 | 5 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Allotropy.
|
By the end of the
lesson, the learner
should be able to:
Define allotropes and allotropy. Identify allotropes of carbon. Represent diamond and graphite diagrammatically. |
Teacher exposes new terms.
Review covalent bond. Discuss boding in diamond and graphite. |
text book
|
K.L.B. BOOK II PP. 131-133
|
|
8-9 |
MIDTERM EXAMS AND MIDTERM BREAK |
|||||||
9 | 3-4 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Physical and chemical properties of diamond, graphite and amorphous carbon
|
By the end of the
lesson, the learner
should be able to:
Describe physical and chemical properties of diamond, graphite and amorphous carbon. State uses of carbon allotropes. |
Discuss physical and chemical properties of diamond, graphite and amorphous carbon.
Explain the Physical and chemical properties of diamond, graphite and amorphous carbon. Discuss uses of carbon allotropes. |
Charcoal, graphite.
|
K.L.B. BOOK II pp 134
|
|
9 | 5 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Burning carbon and oxygen.
|
By the end of the
lesson, the learner
should be able to:
Describe reaction of carbon with oxygen. |
Teacher demonstration- Prepare oxygen and pass dry oxygen into a tube containing carbon. Heat the carbon. Observe effects on limewater.
|
Carbon, limewater, tube, limewater stand& Bunsen burner.
|
K.L.B. BOOK II PP. 134-135
|
|
10 | 1 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Reduction properties of carbon.
|
By the end of the
lesson, the learner
should be able to:
Describe reduction properties of carbon. Show reduction properties of carbon. |
Teacher demonstration ? Burn strongly a mixture of carbon and CuO on a bottle top.
Observe colour changes and give underlying explanation |
CuO, pounded charcoal, Bunsen burner& bottle top
|
K.L.B. BOOK II P.126
|
|
10 | 2 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Reaction of carbon with acids.
Preparation of CO2.
|
By the end of the
lesson, the learner
should be able to:
Describe reaction of carbon with acids. Prepare CO2 in the lab. |
Teacher demonstration- reaction of carbon with hot conc HNO3.
Write balanced equations for the reaction. Review effects of heat on carbonates. Group experiments/teacher demonstration- preparation of CO2. |
Conc. HNO3, limewater.
|
K.L.B. BOOK II P.126
|
|
10 | 3-4 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Properties of CO2.
Chemical equations for reactions involving CO2. |
By the end of the
lesson, the learner
should be able to:
Describe properties of CO2 Write balanced CO2. |
Simple experiments to determine properties of CO2.
Discuss the observations. Give examples of reactions. Write corresponding balanced chemical equations. |
Lime water,
Magnesium ribbon, Universal indicator, lit candle. text book |
K.L.B. BOOK II PP.138-139
K.L.B. BOOK II PP.139-140 |
|
10 | 5 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Chemical equations for reactions involving CO2.
|
By the end of the
lesson, the learner
should be able to:
Write balanced CO2. |
Give examples of reactions. Write corresponding balanced chemical equations.
|
text book
|
K.L.B. BOOK II PP.139-140
|
|
11 | 1 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Uses of CO2.
|
By the end of the
lesson, the learner
should be able to:
State uses of CO2 |
Discuss briefly the uses of CO2.
|
text book
|
K.L.B. BOOK II PP.140-1
|
|
11 | 2 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Uses of CO2.
|
By the end of the
lesson, the learner
should be able to:
State uses of CO2 |
Discuss briefly the uses of CO2.
|
text book
|
K.L.B. BOOK II PP.140-1
|
|
11 | 3-4 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Carbon monoxide lab preparation.
Chemical properties of carbon monoxide. Carbonates and hydrogen carbonates. |
By the end of the
lesson, the learner
should be able to:
To describe preparation of carbon monoxide in the lab To write chemical equations for reactions of carbonates and hydrogen carbonates with acids. |
Teacher demonstration: preparation of carbon monoxide in the lab.
Make observations. Discuss the observations above. Write chemical equations for the reactions. |
text book
|
K.L.B. BOOK II PP. 142-143
|
|
11 | 5 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Heating carbonates and hydrogen carbonates.
|
By the end of the
lesson, the learner
should be able to:
To write equations for reaction of carbonates and hydrogen carbonates on heating. |
Discuss the above observations.
Write corresponding balanced equations. |
text book
|
K.L.B. BOOK II PP.150-151
|
|
12 | 1 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Extraction of sodium carbonate from trona.
|
By the end of the
lesson, the learner
should be able to:
To draw schematic diagram for extraction of sodium carbonates. |
Discuss each step of the process.
Write relevant equations. |
text book
|
K.L.B. BOOK II PP. 153-157
|
|
12 | 2 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Extraction of sodium carbonate from trona.
|
By the end of the
lesson, the learner
should be able to:
To draw schematic diagram for extraction of sodium carbonates. |
Discuss each step of the process.
Write relevant equations. |
text book
|
K.L.B. BOOK II PP. 153-157
|
|
12 | 3-4 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Solvay process of preparing sodium carbonate.
Importance of carbon in nature. & its effects on the environment. |
By the end of the
lesson, the learner
should be able to:
To draw schematic diagram for extraction of sodium carbonates. To discuss: - Importance of carbon in nature. & Effects of carbon on the environment. |
Discuss each step of the process.
Write relevant equations. Discuss the carbon cycle and processes that increase/ reduce amount of CO2 in the air. Uses of CO2 in soft drinks and fire extinguishers. |
text book, chart
|
K.L.B. BOOK II
K.L.B. BOOK II PP.157-158 |
|
12 | 5 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Importance of carbon in nature.
& its
effects on the environment.
|
By the end of the
lesson, the learner
should be able to:
To discuss: - Importance of carbon in nature. & Effects of carbon on the environment. |
Discuss the carbon cycle and processes that increase/ reduce amount of CO2 in the air.
Uses of CO2 in soft drinks and fire extinguishers. |
text book
|
K.L.B. BOOK II PP.157-158
|
Your Name Comes Here