Home






SCHEME OF WORK
Chemistry
Form 2 2025
TERM II
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 1
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Atomic and mass numbers.
First twenty elements of the periodic table.
By the end of the lesson, the learner should be able to:


Name the subatomic particles in an atom.
Define atomic number and mass number of an atom.
Represent atomic and mass numbers symbolically.
Exposition on new concepts;
Probing questions;
Brief discussion.
text book
Periodic table.
K.L.B.
BOOK II

PP. 1-3
2 2
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Isotopes.
By the end of the lesson, the learner should be able to:
Define isotopes.
Give examples of isotopes.
Exposition of definition and examples of isotopes.
Giving examples of isotopes.
Periodic table.
K.L.B.
BOOK II
P. 4





PP. 5-8
2 3
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Electronic configuration.
Electronic configuration in diagrams.
By the end of the lesson, the learner should be able to:
Represent isotopes symbolically.
Define an energy level.
Describe electronic configuration in an atom.
Exposition ? teacher exposes new concepts about electronic configuration.
Written exercise.
Periodic table.
text book
K.L.B.
BOOK II
P. 4





PP. 5-9
2 4
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Periods of the periodic table.
By the end of the lesson, the learner should be able to:
Identify elements of the same period.
Exposition ? Definition of a period.
Q/A: Examples of elements of the same period.
Periodic table.
K.L.B. BOOK IIP. 9
3 1
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Groups of the periodic table.
R.M.M. and isotopes.
By the end of the lesson, the learner should be able to:
Identify elements of the same period.
Exposition ? definition of a group.
Q/A: examples of elements of the same group.
Periodic table.
text book
K.L.B. BOOK IIP. 9
3 2
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Positive ions and ion formation.
Positive ions representation.
By the end of the lesson, the learner should be able to:
To define an ion and a cation.
Teacher gives examples of stable atoms.
Guided discovery that metals need to lose one, two or three electrons to attain stability.
Examples of positive ions.

text book
Chart  ion model.
K.L.B. BOOK IIPP 14-15
3 3
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Negative ions and ion formation.
By the end of the lesson, the learner should be able to:
To define an anion.
To describe formation of negative ions symbolically.
Teacher gives examples of stable atoms.
Guided discovery of formation of negative ions.
Diagrammatic representation of anions.
Chart  ion model.
K.L.B. BOOK IIP 17
3 4
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Valencies of metals.
Valencie of non-metals.
By the end of the lesson, the learner should be able to:
Recall valencies of metals among the first twenty elements in the periodic table.
Q/A to review previous lesson;
Exposition;
Guided discovery.
Periodic table.
K.L.B. BOOK IIP 17
4 1
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Valencies of radicals.
By the end of the lesson, the learner should be able to:
Define a radical.
Recall the valencies of common radicals.
Exposition ? teacher defines a radical, gives examples of radicals and exposes their valencies.
Students draw a table of radicals and their valencies.
text book
K.L.B. BOOK IIP 18
4 2
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Oxidation number.
Electronic configuration, ion formed, valency and oxidation number
By the end of the lesson, the learner should be able to:
Define oxidation number.
Predict oxidation numbers from position of elements in the periodic table.
Q/A: Valencies.
Expose oxidation numbers of common ions.
Students complete a table of ions and their oxidation numbers.
The periodic table.
text book
K.L.B. BOOK IIvP 18
4 3
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Chemical formulae of compounds. - Elements of equal valencies.
By the end of the lesson, the learner should be able to:
To derive the formulae of some compounds involving elements of equal valencies.
Discuss formation of compounds such as NaCl, MgO.
text book
K.L.B. BOOK IIPP 19-20
4 4
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Chemical formulae of compounds. -Elements of unequal valencies.
Chemical formulae of compounds. -Elements of variable valencies.
By the end of the lesson, the learner should be able to:
To derive the formulae of some compounds involving elements of unequal valencies.
Discuss formation of compounds such as MgCl2
Al (NO3)3
text book
K.L.B. BOOK IIPP 19-20
5 1
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Chemical equations.
By the end of the lesson, the learner should be able to:
To identify components of chemical equations.
Review word equations;
Exposition of new concepts with probing questions;
Brief discussion.
text book
K.L.B. BOOK IIPP 21-23
5 2
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Balanced chemical equations.
Balanced chemical equations.(contd)
By the end of the lesson, the learner should be able to:
To balance chemical equations correctly.
Exposition;
Supervised practice.
text book
K.L.B. BOOK IIPP 24-25
5 3
CHEMICAL FAMILIES
Alkali metals. Atomic and ionic radii of alkali metals
Ionisation energy of alkali metals.
By the end of the lesson, the learner should be able to:





Identify alkali metals.
State changes in atomic and ionic radii of alkali metals.

Q/A to reviews elements of group I and their electronic configuration.
Examine a table of elements, their symbols and atomic & ionic radii.
Discussion & making deductions from the table.
The periodic
text book
K.L.B. BOOK IIPP 28-29
5 4
CHEMICAL FAMILIES
Physical properties of alkali metals.
By the end of the lesson, the learner should be able to:
State and explain trends in physical properties of alkali metals.
Examine a table showing comparative physical properties of Li, Na, and K.
Q/A: Teacher asks probing questions as students refer to the table for answers.
Detailed discussion on physical properties of alkali metals.

Chart ? comparative properties of Li, Na, K.
K.L.B. BOOK IIPP 30-31
6 1
CHEMICAL FAMILIES
Chemical properties of alkali metals.
Reaction of alkali metals with chlorine gas.
By the end of the lesson, the learner should be able to:
To describe reaction of alkali metals with water.
Q/A: Review reaction of metals with water.
Writing down chemical equations for the reactions.
Deduce and discuss the order of reactivity down the group.
text book
Sodium, chlorine.
K.L.B. BOOK IIP. 32
6 2
CHEMICAL FAMILIES
Compounds of alkali metals.
By the end of the lesson, the learner should be able to:
Write chemical formulae for compounds of alkali metals.
Explain formation of hydroxides, oxides and chlorides of alkali metals.
Exercise: Completing a table of hydroxides, oxides and chlorides of alkali metals.
Discuss combination of ions of alkali metals with anions.
text book
K.L.B. BOOK II pp 33
6 3
CHEMICAL FAMILIES
Uses of alkali metals.
Alkaline Earth metals Atomic and ionic radii of alkaline earth metals.
By the end of the lesson, the learner should be able to:
State uses of alkali metals.
Descriptive approach: Teacher elucidates uses of alkali metals.
text book
Some alkaline earth metals.
K.L.B. BOOK II pp 34
6 4
CHEMICAL FAMILIES
Physical properties of alkaline earth metals.
By the end of the lesson, the learner should be able to:
State and explain trends in physical properties of alkaline earth metals.
Examine a table showing comparative physical properties of Be, Mg, Ca.
Q/A: Teacher asks probing questions as students refer to the table for answers.
Detailed discussion of physical properties of alkaline earth metals.
Some alkaline earth metals.
K.L.B. BOOK II P. 35
7 1
CHEMICAL FAMILIES
Electrical properties of alkaline earth metals.
Chemical properties of alkaline earth metals. Reaction of alkaline earth metals with oxygen.
By the end of the lesson, the learner should be able to:
To describe electrical properties of alkaline earth metals.
Teacher demonstration: -
To show alkaline metals are good conductors of electric charge.
Alkaline earth metals.
text book
K.L.B. BOOK IIP. 37
7 2
CHEMICAL FAMILIES
Chemical properties of alkaline earth metals. Reaction of alkaline earth metals with water.
By the end of the lesson, the learner should be able to:
To describe reaction of alkaline earth metals with water.
Q/A: Review reaction of metals with water.
Writing down word and balanced chemical equations for the reactions.
Deduce and discuss the order of reactivity down the group.
Some alkaline earth metals.
K.L.B. BOOK IIP. 39
7 3
CHEMICAL FAMILIES
Reaction of alkaline earth metals with chlorine gas.
Reaction of alkaline earth metals with dilute acids.
By the end of the lesson, the learner should be able to:
To write balanced equations for reaction of alkaline earth metals with chlorine gas.
Teacher demonstration- Reaction of sodium with chlorine in a fume chamber.
Q/A: Students to predict a similar reaction between potassium and chlorine.
Word and balanced chemical equations for various reactions.
Supervised practice.
Sodium, chlorine.
revision book
K.L.B. BOOK II P. 41
7 4
CHEMICAL FAMILIES
Chemical formulae of alkaline earth metals.
Uses of some alkaline earth metals and their compounds.
By the end of the lesson, the learner should be able to:
Write chemical formulae for compounds of alkaline earth metals.
Explain formation of hydroxides, oxides and chlorides of alkaline earth metals.
Exercise: Completing a table of hydroxides, oxides and chlorides of alkaline earth metals.
Discuss combination of ions of alkaline earth metals with anions.
text book
K.L.B. BOOK II PP. 45-47
8 1
CHEMICAL FAMILIES
Halogens. Physical properties of halogens.
Comparative physical properties of halogens.
Chemical properties of halogens.
By the end of the lesson, the learner should be able to:
Identify halogens in the periodic table.
Give examples of halogens.
Identify physical states of halogens.
Teacher demonstration: - To examine electrical properties of iodine, solubility in water of chlorine.
Iodine crystals, electrical wire, a bulb.
text book
Chlorine, iron wool, bromine.
KLB BK II
P. 47
8 2
CHEMICAL FAMILIES
Equations of reaction of halogens with metals.
By the end of the lesson, the learner should be able to:
To write balanced chemical equations of reactions involving halogens.
Re-write word equations as chemical equations then balance them.
Supervised practice.
text book
K.L.B. BOOK II P. 50
8 3
CHEMICAL FAMILIES
Reaction of halogens with water.
Some uses of halogens and their compounds.
Noble Gases. Comparative physical properties of noble gases.
By the end of the lesson, the learner should be able to:
To describe reaction of halogens with water and the results obtained.
Bubbling chlorine gas through water.
Carry out litmus test for the water.
Explain the observations.
Chlorine gas, litmus papers.
text book
K.L.B. BOOK II P. 51
8 4
CHEMICAL FAMILIES
STRUCTURE & BONDING
STRUCTURE & BONDING
STRUCTURE & BONDING
Uses of noble gases.
Chemical bonds. Ionic bond.
Ionic bond representation.
Grant ionic structures.
By the end of the lesson, the learner should be able to:
State uses of noble gases.
Teacher elucidates uses of noble gases.
text book
Chart- dot and cross diagrams.
Models for bonding.
Giant sodium chloride model.
K.L.B. BOOK IIP. 54
9 1
STRUCTURE & BONDING
Physical properties of ionic compounds.
Covalent bond.
Co-ordinate bond.
By the end of the lesson, the learner should be able to:
Describe physical properties of ionic compounds.
Explain the differences in the physical properties of ionic compounds.
Analyse tabulated comparative physical properties of ionic compounds.

Teacher asks probing questions.
text book
K.L.B. BOOK IIPP 58-59
9 2
STRUCTURE & BONDING
Molecular structure.
Trend in physical properties of molecular structures.
Giant atomic structure in diamond.
Giant atomic structure in graphite.
By the end of the lesson, the learner should be able to:
To describe the molecular structure.
To give examples of substance exhibiting molecular structure
Discussion ? To explain formation of the giant structure and give examples of substance exhibiting molecular structure.
text book
Sugar, naphthalene, iodine rhombic sulphur.
Diagrams in textbooks.
K.L.B. BOOK IIP 65
9 3
STRUCTURE & BONDING
PROPERTIES AND TRENDS ACROSS PERIOD THREE
Metallic bond. Uses of some metals.
Physical properties of elements in periods.
By the end of the lesson, the learner should be able to:
To describe mutual electronic forces between electrons and nuclei.
To describe metallic bond.
To compare physical properties of metals.
To state uses of some metals.
Discussion:
Detailed analysis of comparative physical properties of metals and their uses.



Probing questions & brief explanations.
text book
The periodic table.
K.L.B. BOOK IIP 70
9 4
PROPERTIES AND TRENDS ACROSS PERIOD THREE
Physical properties of elements in period 3.
Chemical properties of elements in period 3.
Chemical properties of elements in the third period.
Oxides of period 3 elements.
By the end of the lesson, the learner should be able to:
To compare other physical properties of elements across period 3.
Analyse comparative physical properties presented in form of a table.
Explain the trend in the physical properties given.
The periodic table.
K.L.B. BOOK II P. 77
10 1
PROPERTIES AND TRENDS ACROSS PERIOD THREE
SALTS
SALTS
Chlorides of period 3 elements.
Types of salts.
Solubility of salts in water.
By the end of the lesson, the learner should be able to:
To explain chemical behavior of their chlorides.
To describe hydrolysis reaction.
Comparative analysis, discussion and explanation.
The periodic table.
text book
Sulphates, chlorides, nitrates, carbonates of various metals.
K.L.B. BOOK II PP. 77-78
10 2
SALTS
Solubility of bases in water.
By the end of the lesson, the learner should be able to:
To test solubility of various bases in water.
To carry out litmus test on the resulting solutions.
Class experiments- Dissolve salts in 5cc of water.
Record the solubility in a table,
Carry out litmus tests.
Discuss the results.

Oxides, hydroxides, of various metals, litmus papers.
K.L.B. BOOK IIPP. 94-95
10 3
SALTS
Methods of preparing various salts.
Direct synthesis of a salts.
Ionic equations.
By the end of the lesson, the learner should be able to:
To describe various methods of preparing some salts.
Experimental and descriptive treatments of preparation of salts e.g. ZnSO4, CuSO4, NaCl and Pb(NO3)2.

CuO, H2SO4, HCl, NaOH, PbCO3, dil HNO3.
Iron,
Sulphur
PbNO3, MgSO4 solutions.
K.L.B. BOOK II pp96
10 4
SALTS
Effects of heat on carbonates.
Effects of heat on nitrates.
Effects of heat on sulphates.
By the end of the lesson, the learner should be able to:
To state effects of heat on carbonates.
To predict products resulting from heating metal carbonates.
Group experiments- To investigate effects of heat on Na2CO3, K2CO3, CaCO3, ZnCO3, PbCO3, e.t.c.
Observe various colour changes before, during and after heating.
Write equations for the reactions.
Various carbonates.
Common metal nitrates.
Common sulphates.
K.L.B. BOOK II PP. 108-109
11 1
SALTS
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
Hygroscopy, Deliquescence and Efflorescence.
Uses of salts.
Electrical conductivity.
Molten electrolytes.
By the end of the lesson, the learner should be able to:
To define hygroscopic deliquescent and efflorescent salts.
To give examples of hygroscopic deliquescent and efflorescent salts.
Prepare a sample of various salts.
Expose them to the atmosphere overnight.
Students classify the salts as hygroscopic, deliquescent and / or efflorescent.
Various solids, bulb, battery, & wires.
Molten candle wax
Sugar
Sulphur
Lead oxide.
K.L.B. BOOK II P. 114
11 2
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
Electrolysis.
Aqueous electrolytes. Electrodes.
By the end of the lesson, the learner should be able to:
To define electrolysis
To describe the process of electrolysis in terms of charge movement.
Descriptive approach punctuated with Q/A.
Graphite electrodes
Battery
Various aqueous solutions switch bulb.
K.L.B. BOOK II
11 3
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
Reaction on electrodes.
Binary electrolyte.
Application of electrolysis.
Electroplating.
By the end of the lesson, the learner should be able to:
To describe half- equation reactions at the cathode and anode
To demonstrate ?Electrolysis of molten lead (II) bromide
Observe colour changes
Explanation of half-equations and reactions at the electrodes.
Graphite electrodes
Battery
Various aqueous solutions switch.
text book
Silver nitrate
Iron nail
Complete circuit battery.
K.L.B. BOOK II PP.126-127
11 4
CARBON AND SOME OF ITS COMPOUNDS.
Allotropy.
Physical and chemical properties of diamond, graphite and amorphous carbon
Burning carbon and oxygen.
By the end of the lesson, the learner should be able to:
Define allotropes and allotropy.
Identify allotropes of carbon.
Represent diamond and graphite diagrammatically.
Teacher exposes new terms.
Review covalent bond.
Discuss boding in diamond and graphite.
text book
Charcoal, graphite.
Carbon, limewater, tube, limewater stand& Bunsen burner.
K.L.B. BOOK II PP. 131-133
12 1
CARBON AND SOME OF ITS COMPOUNDS.
Reduction properties of carbon.
Reaction of carbon with acids. Preparation of CO2.
Properties of CO2.
Chemical equations for reactions involving CO2.
By the end of the lesson, the learner should be able to:
Describe reduction properties of carbon.
Show reduction properties of carbon.
Teacher demonstration ? Burn strongly a mixture of carbon and CuO on a bottle top.
Observe colour changes and give underlying explanation
CuO, pounded charcoal, Bunsen burner& bottle top
Conc. HNO3, limewater.
Lime water,
Magnesium ribbon,
Universal indicator,
lit candle.
text book
K.L.B. BOOK II P.126
12 2
CARBON AND SOME OF ITS COMPOUNDS.
Uses of CO2.
Carbon monoxide lab preparation.
Chemical properties of carbon monoxide.
By the end of the lesson, the learner should be able to:
State uses of CO2
Discuss briefly the uses of CO2.
text book
K.L.B. BOOK II PP.140-1
12 3
CARBON AND SOME OF ITS COMPOUNDS.
Carbonates and hydrogen carbonates.
Heating carbonates and hydrogen carbonates.
Extraction of sodium carbonate from trona.
By the end of the lesson, the learner should be able to:
To write chemical equations for reactions of carbonates and hydrogen carbonates with acids.
Discuss the observations above.
Write chemical equations for the reactions.
text book
K.L.B. BOOK II
12 4
CARBON AND SOME OF ITS COMPOUNDS.
Solvay process of preparing sodium carbonate.
Importance of carbon in nature. & its effects on the environment.
By the end of the lesson, the learner should be able to:
To draw schematic diagram for extraction of sodium carbonates.
Discuss each step of the process.

Write relevant equations.
text book, chart
text book
K.L.B. BOOK II

Your Name Comes Here


Download

Feedback