If this scheme pleases you, click here to download.
WK | LSN | STRAND | SUB-STRAND | LESSON LEARNING OUTCOMES | LEARNING EXPERIENCES | KEY INQUIRY QUESTIONS | LEARNING RESOURCES | ASSESSMENT METHODS | REFLECTION |
---|---|---|---|---|---|---|---|---|---|
1 | 1 |
Living Things and their Environment
|
Reproduction in plants - Parts of a flower
Reproduction in plants - Functions of parts of a flower |
By the end of the
lesson, the learner
should be able to:
- Identify external parts of a flower - Draw and label parts of a flower - Appreciate the complexity of flower structure |
- Collect and observe flowers from the school compound
- Identify and name the parts of the flowers - Draw and label the parts of a flower - Discuss the functions of the parts of a flower |
How does reproduction in plants occur?
|
- Mentor Integrated Science Grade 9 (pg. 86)
- Fresh flowers - Hand lens - Drawing materials - Mentor Integrated Science Grade 9 (pg. 87) - Flower models or charts - Digital devices |
- Observation
- Drawing assessment
- Oral questions
- Written assignments
|
|
2 |
Living Things and their Environment
|
Reproduction in plants - Meaning of pollination
Reproduction in plants - Types of pollination (self-pollination) |
By the end of the
lesson, the learner
should be able to:
- Explain the meaning of pollination - Describe the importance of pollination in plant reproduction - Appreciate the role of pollination in plant reproduction |
- Discuss the meaning of pollination
- Watch videos on pollination process - Research on the importance of pollination in plant reproduction - Present findings to the class |
How does reproduction in plants occur?
|
- Mentor Integrated Science Grade 9 (pg. 88)
- Digital devices - Videos on pollination - Charts showing pollination - Mentor Integrated Science Grade 9 (pg. 89) - Charts showing self-pollination |
- Observation
- Oral questions
- Written assignments
- Group presentations
|
||
3 |
Living Things and their Environment
|
Reproduction in plants - Types of pollination (cross-pollination)
|
By the end of the
lesson, the learner
should be able to:
- Explain cross-pollination - Identify plants that undergo cross-pollination - Appreciate the advantages of cross-pollination |
- Discuss cross-pollination
- Use diagrams/charts to illustrate cross-pollination - Research on examples of plants that undergo cross-pollination - Compare self-pollination and cross-pollination |
How does reproduction in plants occur?
|
- Mentor Integrated Science Grade 9 (pg. 89)
- Charts showing cross-pollination - Digital devices |
- Observation
- Oral questions
- Written assignments
- Group presentations
|
||
4 |
Living Things and their Environment
|
Reproduction in plants - Agents of pollination (insects)
Reproduction in plants - Agents of pollination (birds, other animals) |
By the end of the
lesson, the learner
should be able to:
- Identify insects as agents of pollination - Explain how insects aid in pollination - Appreciate the role of insects in plant reproduction |
- Observe pictures/videos of insects as pollinators
- Discuss how insects aid in pollination - Take a field excursion to observe insects pollinating flowers - Record observations and present to class |
How does reproduction in plants occur?
|
- Mentor Integrated Science Grade 9 (pg. 90)
- Pictures/videos of insect pollinators - Digital devices - Pictures/videos of bird and animal pollinators |
- Observation
- Field notes assessment
- Oral questions
- Written assignments
|
||
5 |
Living Things and their Environment
|
Reproduction in plants - Agents of pollination (wind, water)
Reproduction in plants - Adaptations of flowers to insect pollination |
By the end of the
lesson, the learner
should be able to:
- Identify wind and water as agents of pollination - Explain how wind and water aid in pollination - Show interest in various pollination mechanisms |
- Observe pictures/videos of wind and water pollination
- Discuss how wind and water aid in pollination - Research on examples of flowers pollinated by wind and water - Present findings to class |
How does reproduction in plants occur?
|
- Mentor Integrated Science Grade 9 (pg. 91)
- Pictures/videos of wind and water pollination - Digital devices - Mentor Integrated Science Grade 9 (pg. 92) - Fresh insect-pollinated flowers - Pictures of insect-pollinated flowers - Hand lens |
- Observation
- Oral questions
- Written assignments
- Group presentations
|
||
2 | 1 |
Living Things and their Environment
|
Reproduction in plants - Adaptations of flowers to wind pollination
|
By the end of the
lesson, the learner
should be able to:
- Identify adaptations of flowers to wind pollination - Explain how these adaptations facilitate wind pollination - Value the diversity in plant adaptations |
- Observe wind-pollinated flowers
- Identify and discuss adaptations to wind pollination - Compare insect-pollinated and wind-pollinated flowers - Create presentations on adaptations to wind pollination |
How does reproduction in plants occur?
|
- Mentor Integrated Science Grade 9 (pg. 93)
- Fresh wind-pollinated flowers - Pictures of wind-pollinated flowers - Hand lens |
- Observation
- Oral questions
- Written assignments
- Group presentations
|
|
2 |
Living Things and their Environment
|
Reproduction in plants - Effects of agrochemicals on pollinating agents
|
By the end of the
lesson, the learner
should be able to:
- Explain the effects of agrochemicals on pollinating agents - Describe how these effects impact plant reproduction - Show concern for the impact of human activities on pollinators |
- Research on the effects of agrochemicals on pollinating agents
- Discuss how these effects impact plant reproduction - Debate on the use of agrochemicals and their effects on pollination - Present findings to class |
How does reproduction in plants occur?
|
- Mentor Integrated Science Grade 9 (pg. 94)
- Digital devices - Articles on effects of agrochemicals on pollinators |
- Observation
- Oral questions
- Written assignments
- Debate assessment
|
||
3 |
Living Things and their Environment
|
Reproduction in plants - Effects of agrochemicals on pollinating agents
|
By the end of the
lesson, the learner
should be able to:
- Explain the effects of agrochemicals on pollinating agents - Describe how these effects impact plant reproduction - Show concern for the impact of human activities on pollinators |
- Research on the effects of agrochemicals on pollinating agents
- Discuss how these effects impact plant reproduction - Debate on the use of agrochemicals and their effects on pollination - Present findings to class |
How does reproduction in plants occur?
|
- Mentor Integrated Science Grade 9 (pg. 94)
- Digital devices - Articles on effects of agrochemicals on pollinators |
- Observation
- Oral questions
- Written assignments
- Debate assessment
|
||
4 |
Living Things and their Environment
|
Reproduction in plants - Fertilization in flowering plants
|
By the end of the
lesson, the learner
should be able to:
- Explain the process of fertilization in flowering plants - Describe the journey of pollen tube to the ovule - Appreciate the complexity of plant reproduction |
- Watch videos on fertilization in flowering plants
- Use diagrams/charts to illustrate the fertilization process - Discuss the journey of the pollen tube to the ovule - Create presentations on fertilization in flowering plants |
How does reproduction in plants occur?
|
- Mentor Integrated Science Grade 9 (pg. 95)
- Videos on fertilization in plants - Charts showing fertilization process - Digital devices |
- Observation
- Oral questions
- Written assignments
- Group presentations
|
||
5 |
Living Things and their Environment
|
Reproduction in plants - Seed formation in flowering plants
|
By the end of the
lesson, the learner
should be able to:
- Explain the process of seed formation in flowering plants - Identify the changes that occur during seed formation - Value the importance of seeds in plant reproduction |
- Watch videos on seed formation
- Use diagrams/charts to illustrate seed formation - Observe different stages of seed development if available - Discuss the changes that occur during seed formation |
How does reproduction in plants occur?
|
- Mentor Integrated Science Grade 9 (pg. 96)
- Videos on seed formation - Charts showing seed formation - Samples of seeds at different developmental stages |
- Observation
- Oral questions
- Written assignments
- Drawing assessment
|
||
3 | 1 |
Living Things and their Environment
|
Reproduction in plants - Fruit formation in flowering plants
|
By the end of the
lesson, the learner
should be able to:
- Explain the process of fruit formation in flowering plants - Identify the changes that occur during fruit formation - Appreciate the role of fruits in plant reproduction |
- Watch videos on fruit formation
- Use diagrams/charts to illustrate fruit formation - Observe different stages of fruit development if available - Discuss the changes that occur during fruit formation |
How does reproduction in plants occur?
|
- Mentor Integrated Science Grade 9 (pg. 97)
- Videos on fruit formation - Charts showing fruit formation - Samples of fruits at different developmental stages |
- Observation
- Oral questions
- Written assignments
- Drawing assessment
|
|
2 |
Living Things and their Environment
|
Reproduction in plants - Fruit and seed dispersal (meaning and importance)
|
By the end of the
lesson, the learner
should be able to:
- Explain the meaning of fruit and seed dispersal - Describe the importance of fruit and seed dispersal - Value the role of dispersal in plant reproduction |
- Discuss the meaning of fruit and seed dispersal
- Research on the importance of fruit and seed dispersal - Debate on what would happen if seeds were not dispersed - Present findings to class |
How does reproduction in plants occur?
|
- Mentor Integrated Science Grade 9 (pg. 98)
- Digital devices - Charts showing seed dispersal |
- Observation
- Oral questions
- Written assignments
- Debate assessment
|
||
3 |
Living Things and their Environment
|
Reproduction in plants - Modes of fruit and seed dispersal (animals)
|
By the end of the
lesson, the learner
should be able to:
- Explain animal dispersal of fruits and seeds - Identify fruits and seeds dispersed by animals - Appreciate the role of animals in plant reproduction |
- Collect and observe fruits and seeds dispersed by animals
- Discuss the adaptations of these fruits and seeds for animal dispersal - Research on examples of animal-dispersed fruits and seeds - Create presentations on animal dispersal |
How does reproduction in plants occur?
|
- Mentor Integrated Science Grade 9 (pg. 99)
- Samples of animal-dispersed fruits and seeds - Digital devices - Pictures of animal dispersal |
- Observation
- Oral questions
- Written assignments
- Collection assessment
|
||
4 |
Living Things and their Environment
|
Reproduction in plants - Modes of fruit and seed dispersal (wind, water)
|
By the end of the
lesson, the learner
should be able to:
- Explain wind and water dispersal of fruits and seeds - Identify fruits and seeds dispersed by wind and water - Show interest in different dispersal mechanisms |
- Collect and observe fruits and seeds dispersed by wind and water
- Discuss the adaptations of these fruits and seeds for wind and water dispersal - Research on examples of wind and water dispersed fruits and seeds - Create presentations on wind and water dispersal |
How does reproduction in plants occur?
|
- Mentor Integrated Science Grade 9 (pg. 100)
- Samples of wind and water-dispersed fruits and seeds - Digital devices - Pictures of wind and water dispersal |
- Observation
- Oral questions
- Written assignments
- Collection assessment
|
||
5 |
Living Things and their Environment
|
Reproduction in plants - Modes of fruit and seed dispersal (wind, water)
|
By the end of the
lesson, the learner
should be able to:
- Explain wind and water dispersal of fruits and seeds - Identify fruits and seeds dispersed by wind and water - Show interest in different dispersal mechanisms |
- Collect and observe fruits and seeds dispersed by wind and water
- Discuss the adaptations of these fruits and seeds for wind and water dispersal - Research on examples of wind and water dispersed fruits and seeds - Create presentations on wind and water dispersal |
How does reproduction in plants occur?
|
- Mentor Integrated Science Grade 9 (pg. 100)
- Samples of wind and water-dispersed fruits and seeds - Digital devices - Pictures of wind and water dispersal |
- Observation
- Oral questions
- Written assignments
- Collection assessment
|
||
4 | 1 |
Living Things and their Environment
|
Reproduction in plants - Modes of fruit and seed dispersal (self-dispersal mechanisms)
|
By the end of the
lesson, the learner
should be able to:
- Explain self-dispersal mechanisms in fruits and seeds - Identify fruits and seeds that use self-dispersal mechanisms - Appreciate the diversity in dispersal mechanisms |
- Observe fruits that use self-dispersal mechanisms
- Discuss the adaptations of these fruits and seeds for self-dispersal - Research on examples of self-dispersed fruits and seeds - Create presentations on self-dispersal mechanisms |
How does reproduction in plants occur?
|
- Mentor Integrated Science Grade 9 (pg. 101)
- Samples of self-dispersed fruits and seeds - Digital devices - Pictures of self-dispersal mechanisms |
- Observation
- Oral questions
- Written assignments
- Group presentations
|
|
2 |
Living Things and their Environment
|
Reproduction in plants - Adaptations of fruits and seeds for dispersal
|
By the end of the
lesson, the learner
should be able to:
- Identify adaptations of fruits and seeds for different dispersal methods - Categorize fruits and seeds based on their dispersal methods - Value the relationship between structure and function |
- Collect and observe different fruits and seeds
- Identify adaptations for different dispersal methods - Categorize the fruits and seeds based on their dispersal methods - Create presentations on adaptations for dispersal |
How does reproduction in plants occur?
|
- Mentor Integrated Science Grade 9 (pg. 102)
- Various fruit and seed samples - Hand lens - Sorting trays |
- Observation
- Oral questions
- Classification activities
- Written assignments
|
||
3 |
Living Things and their Environment
|
Reproduction in plants - Role of flowers in nature
|
By the end of the
lesson, the learner
should be able to:
- Explain the role of flowers in nature - Describe the ecological importance of flowers - Appreciate the value of flowers in the ecosystem |
- Discuss the role of flowers in nature
- Research on the ecological importance of flowers - Debate on the value of flowers in the ecosystem - Create presentations on the role of flowers in nature |
How does reproduction in plants occur?
|
- Mentor Integrated Science Grade 9 (pg. 105)
- Digital devices - Pictures of different flowers and their roles - Charts on flower roles in ecosystems |
- Observation
- Oral questions
- Written assignments
- Group presentations
|
||
4 |
Living Things and their Environment
|
The interdependence of life - Components of the environment
The interdependence of life - Biotic factors (predation) |
By the end of the
lesson, the learner
should be able to:
- Identify biotic and abiotic components of the environment - Explain the interrelationships between organisms and their environment - Appreciate the interdependence in ecosystems |
- Observe different components of the environment in the school compound
- Identify biotic and abiotic components - Discuss interrelationships between organisms and their environment - Record observations in a table |
What is the role of living and non-living factors in environments?
|
- Mentor Integrated Science Grade 9 (pg. 107)
- School grounds - Notebooks - Digital devices - Mentor Integrated Science Grade 9 (pg. 108) - Pictures/videos of predator-prey relationships |
- Observation
- Field notes assessment
- Oral questions
- Written assignments
|
||
5 |
Living Things and their Environment
|
The interdependence of life - Biotic factors (parasitism)
The interdependence of life - Biotic factors (symbiosis) |
By the end of the
lesson, the learner
should be able to:
- Explain parasitism as a biotic interaction - Identify examples of parasitic relationships - Value the diversity of relationships in ecosystems |
- Discuss parasitism as a biotic interaction
- Observe pictures/videos of parasitic relationships - Research on examples of parasitic relationships - Present findings to class |
What is the role of living and non-living factors in environments?
|
- Mentor Integrated Science Grade 9 (pg. 109)
- Pictures/videos of parasitic relationships - Digital devices - Mentor Integrated Science Grade 9 (pg. 110) - Pictures/videos of symbiotic relationships |
- Observation
- Oral questions
- Written assignments
- Group presentations
|
||
5 | 1 |
Living Things and their Environment
|
The interdependence of life - Biotic factors (competition)
|
By the end of the
lesson, the learner
should be able to:
- Explain competition as a biotic interaction - Identify examples of competitive relationships - Show interest in how competition shapes ecosystems |
- Discuss competition as a biotic interaction
- Observe pictures/videos of competitive relationships - Research on examples of competitive relationships - Present findings to class |
What is the role of living and non-living factors in environments?
|
- Mentor Integrated Science Grade 9 (pg. 111)
- Pictures/videos of competitive relationships - Digital devices |
- Observation
- Oral questions
- Written assignments
- Group presentations
|
|
2 |
Living Things and their Environment
|
The interdependence of life - Biotic factors (saprophytic)
The interdependence of life - Abiotic factors (temperature) |
By the end of the
lesson, the learner
should be able to:
- Explain saprophytic relationships as a biotic interaction - Identify examples of saprophytic organisms - Appreciate the role of saprophytes in ecosystems |
- Discuss saprophytic relationships
- Observe pictures/videos of saprophytic organisms - Research on examples of saprophytic organisms - Create presentations on saprophytic relationships |
What is the role of living and non-living factors in environments?
|
- Mentor Integrated Science Grade 9 (pg. 112)
- Pictures/videos of saprophytic organisms - Digital devices - Mentor Integrated Science Grade 9 (pg. 113) - Thermometers - Pictures/videos of organisms in different temperature zones |
- Observation
- Oral questions
- Written assignments
- Group presentations
|
||
3 |
Living Things and their Environment
|
The interdependence of life - Abiotic factors (light)
The interdependence of life - Abiotic factors (water) |
By the end of the
lesson, the learner
should be able to:
- Explain how light affects living organisms - Describe adaptations of organisms to different light conditions - Appreciate the role of light in ecosystems |
- Discuss how light affects living organisms
- Research on adaptations of organisms to different light conditions - Observe plants grown under different light conditions - Present findings to class |
What is the role of living and non-living factors in environments?
|
- Mentor Integrated Science Grade 9 (pg. 114)
- Light meters (if available) - Plants grown under different light conditions - Digital devices - Mentor Integrated Science Grade 9 (pg. 115) - Pictures of plants from arid and wet environments - Water samples |
- Observation
- Oral questions
- Written assignments
- Group presentations
|
||
4 |
Living Things and their Environment
|
The interdependence of life - Abiotic factors (wind)
|
By the end of the
lesson, the learner
should be able to:
- Explain how wind affects living organisms - Describe adaptations of organisms to windy environments - Appreciate the role of wind in ecosystems |
- Discuss how wind affects living organisms
- Research on adaptations of organisms to windy environments - Observe plants from windy and sheltered environments - Present findings to class |
What is the role of living and non-living factors in environments?
|
- Mentor Integrated Science Grade 9 (pg. 116)
- Pictures of plants from windy and sheltered environments - Digital devices |
- Observation
- Oral questions
- Written assignments
- Group presentations
|
||
5 |
Living Things and their Environment
|
The interdependence of life - Abiotic factors (wind)
|
By the end of the
lesson, the learner
should be able to:
- Explain how wind affects living organisms - Describe adaptations of organisms to windy environments - Appreciate the role of wind in ecosystems |
- Discuss how wind affects living organisms
- Research on adaptations of organisms to windy environments - Observe plants from windy and sheltered environments - Present findings to class |
What is the role of living and non-living factors in environments?
|
- Mentor Integrated Science Grade 9 (pg. 116)
- Pictures of plants from windy and sheltered environments - Digital devices |
- Observation
- Oral questions
- Written assignments
- Group presentations
|
||
6 | 1 |
Living Things and their Environment
|
The interdependence of life - Abiotic factors (atmospheric pressure, pH and salinity)
|
By the end of the
lesson, the learner
should be able to:
- Explain how atmospheric pressure, pH and salinity affect living organisms - Describe adaptations of organisms to these abiotic factors - Value adaptations to different environments |
- Discuss how atmospheric pressure, pH and salinity affect living organisms
- Research on adaptations of organisms to these factors - Test pH and salinity of different water samples if possible - Present findings to class |
What is the role of living and non-living factors in environments?
|
- Mentor Integrated Science Grade 9 (pg. 117)
- pH testing equipment (if available) - Water samples of different salinity - Digital devices |
- Observation
- Oral questions
- Practical assessment
- Written assignments
|
|
2 |
Living Things and their Environment
|
The interdependence of life - Energy flow (food chains)
|
By the end of the
lesson, the learner
should be able to:
- Explain the concept of food chains - Construct simple food chains - Appreciate energy flow in ecosystems |
- Discuss the concept of food chains
- Identify producers and consumers in the environment - Construct simple food chains using organisms observed in the local environment - Present food chains to class |
What is the role of living and non-living factors in environments?
|
- Mentor Integrated Science Grade 9 (pg. 118)
- Charts showing food chains - Pictures of local organisms - Digital devices |
- Observation
- Oral questions
- Food chain construction assessment
- Written assignments
|
||
3 |
Living Things and their Environment
|
The interdependence of life - Energy flow (food webs)
|
By the end of the
lesson, the learner
should be able to:
- Explain the concept of food webs - Construct simple food webs - Value the complexity of feeding relationships in ecosystems |
- Discuss the concept of food webs
- Identify how food chains interconnect to form food webs - Construct simple food webs using organisms observed in the local environment - Present food webs to class |
What is the role of living and non-living factors in environments?
|
- Mentor Integrated Science Grade 9 (pg. 119)
- Charts showing food webs - Pictures of local organisms - Digital devices |
- Observation
- Oral questions
- Food web construction assessment
- Written assignments
|
||
4 |
Living Things and their Environment
|
The interdependence of life - Human activities (habitat change)
|
By the end of the
lesson, the learner
should be able to:
- Explain how human activities lead to habitat change - Describe the effects of habitat change on ecosystems - Show concern for habitat conservation |
- Discuss human activities that lead to habitat change
- Research on the effects of habitat change on ecosystems - Debate on the balance between development and conservation - Present findings to class |
What is the role of living and non-living factors in environments?
|
- Mentor Integrated Science Grade 9 (pg. 120)
- Pictures showing habitat change - Digital devices - Newspaper articles |
- Observation
- Oral questions
- Debate assessment
- Written assignments
|
||
5 |
Living Things and their Environment
|
The interdependence of life - Human activities (hunting and poaching)
|
By the end of the
lesson, the learner
should be able to:
- Explain the effects of hunting and poaching on ecosystems - Describe conservation measures against hunting and poaching - Show concern for wildlife conservation |
- Discuss the effects of hunting and poaching on ecosystems
- Research on conservation measures against hunting and poaching - Debate on sustainable hunting practices - Present findings to class |
What is the role of living and non-living factors in environments?
|
- Mentor Integrated Science Grade 9 (pg. 121)
- Pictures related to hunting and poaching - Digital devices - Newspaper articles |
- Observation
- Oral questions
- Debate assessment
- Written assignments
|
||
7 | 1 |
Living Things and their Environment
|
The interdependence of life - Human activities (introduction of new living things)
|
By the end of the
lesson, the learner
should be able to:
- Explain the effects of introducing new species to ecosystems - Describe examples of invasive species and their impacts - Appreciate the importance of biodiversity conservation |
- Discuss the effects of introducing new species to ecosystems
- Research on examples of invasive species and their impacts - Debate on the management of invasive species - Present findings to class |
What is the role of living and non-living factors in environments?
|
- Mentor Integrated Science Grade 9 (pg. 122)
- Pictures of invasive species - Digital devices - Newspaper articles |
- Observation
- Oral questions
- Debate assessment
- Written assignments
|
|
2 |
Living Things and their Environment
|
The interdependence of life - Human activities (introduction of new living things)
|
By the end of the
lesson, the learner
should be able to:
- Explain the effects of introducing new species to ecosystems - Describe examples of invasive species and their impacts - Appreciate the importance of biodiversity conservation |
- Discuss the effects of introducing new species to ecosystems
- Research on examples of invasive species and their impacts - Debate on the management of invasive species - Present findings to class |
What is the role of living and non-living factors in environments?
|
- Mentor Integrated Science Grade 9 (pg. 122)
- Pictures of invasive species - Digital devices - Newspaper articles |
- Observation
- Oral questions
- Debate assessment
- Written assignments
|
||
3 |
Living Things and their Environment
|
The interdependence of life - Interrelationships in Kenya national parks
|
By the end of the
lesson, the learner
should be able to:
- Describe interrelationships in Kenya national parks - Construct food chains and food webs of Kenya national parks - Value the importance of national parks for biodiversity |
- Research on interrelationships in Kenya national parks
- Construct food chains and food webs of Kenya national parks - Discuss the importance of national parks for biodiversity - Present findings to class |
What is the role of living and non-living factors in environments?
|
- Mentor Integrated Science Grade 9 (pg. 123)
- Pictures of Kenya national parks - Digital devices - Maps of Kenya national parks |
- Observation
- Oral questions
- Food web construction assessment
- Presentations
|
||
4 |
Living Things and their Environment
|
The interdependence of life - Role of decomposers in ecosystems
|
By the end of the
lesson, the learner
should be able to:
- Explain the role of decomposers in ecosystems - Identify examples of decomposers - Appreciate the importance of decomposers in nutrient cycling |
- Discuss the role of decomposers in ecosystems
- Observe pictures/videos of decomposers in action - Research on examples of decomposers - Create a model of nutrient cycling showing the role of decomposers |
What is the role of living and non-living factors in environments?
|
- Mentor Integrated Science Grade 9 (pg. 125)
- Pictures/videos of decomposers - Digital devices - Materials to create models |
- Observation
- Oral questions
- Model assessment
- Written assignments
|
||
5 |
Force and Energy
|
Curved mirrors - Types of curved mirrors
Curved mirrors - Terms associated with concave mirrors |
By the end of the
lesson, the learner
should be able to:
- Describe the types of curved mirrors - Differentiate between concave and convex mirrors - Appreciate the applications of curved mirrors in day to day life |
- Discuss the types of curved mirrors (concave, convex, and parabolic surfaces)
- Use shiny spoons to demonstrate the difference between concave and convex reflective surfaces - Observe and record how images are formed by the inner and outer surfaces of the spoon |
How are curved mirrors used in day to day life?
|
- Mentor Integrated Science (pg. 133)
- Shiny spoons - Digital resources on curved mirrors - Mentor Integrated Science (pg. 135) - Digital resources - Charts showing the structure of a concave mirror |
- Observation
- Oral questions
- Written assignments
|
||
8 | 1 |
Force and Energy
|
Curved mirrors - Determining focal length of concave mirror
Curved mirrors - Ray diagrams for concave mirrors |
By the end of the
lesson, the learner
should be able to:
- Explain how to determine the focal length of a concave mirror - Perform an experiment to determine the focal length of a concave mirror - Value the practical approach in determining properties of mirrors |
- Set up a concave mirror to focus an image of a distant object on a screen
- Measure the distance between the mirror and the screen - Record and analyze the results to determine the focal length |
Why is it important to know the focal length of a concave mirror?
|
- Mentor Integrated Science (pg. 137)
- Concave mirrors - Rulers - White screens or plain paper - Mirror holders - Mentor Integrated Science (pg. 140) - Plain paper - Pencils - Drawing instruments |
- Observation
- Practical assessment
- Written reports
|
|
2 |
Force and Energy
|
Curved mirrors - Image formation by concave mirrors (beyond C)
Curved mirrors - Image formation by concave mirrors (at C) |
By the end of the
lesson, the learner
should be able to:
- Draw ray diagrams to locate images when objects are placed beyond C - Describe the characteristics of images formed - Appreciate the systematic approach in determining image properties |
- Draw ray diagrams to locate images when objects are placed beyond the center of curvature
- Use the ray diagrams to determine image characteristics (size, position, nature) - Compare theoretical predictions with practical observations |
What are the characteristics of images formed when objects are placed beyond the center of curvature?
|
- Mentor Integrated Science (pg. 143)
- Concave mirrors - Drawing instruments - Digital resources - Mentor Integrated Science (pg. 144) |
- Observation
- Ray diagram assessment
- Written descriptions
|
||
3 |
Force and Energy
|
Curved mirrors - Image formation by concave mirrors (between C and F)
|
By the end of the
lesson, the learner
should be able to:
- Draw ray diagrams to locate images when objects are placed between C and F - Describe the characteristics of images formed - Appreciate the systematic approach in determining image properties |
- Draw ray diagrams to locate images when objects are placed between the center of curvature and the principal focus
- Determine the characteristics of images formed - Verify the results through practical observation |
What are the characteristics of images formed when objects are placed between the center of curvature and the principal focus?
|
- Mentor Integrated Science (pg. 145)
- Concave mirrors - Drawing instruments - Digital resources |
- Observation
- Ray diagram assessment
- Written descriptions
|
||
4 |
Force and Energy
|
Curved mirrors - Image formation by concave mirrors (at F)
Curved mirrors - Image formation by concave mirrors (between F and P) |
By the end of the
lesson, the learner
should be able to:
- Draw ray diagrams to locate images when objects are placed at F - Describe the characteristics of images formed - Show interest in understanding special cases of image formation |
- Draw ray diagrams to locate images when objects are placed at the principal focus
- Analyze what happens to reflected rays when objects are at F - Discuss the concept of images formed at infinity |
What happens to the image when an object is placed at the principal focus of a concave mirror?
|
- Mentor Integrated Science (pg. 147)
- Concave mirrors - Drawing instruments - Digital resources - Mentor Integrated Science (pg. 148) |
- Observation
- Ray diagram assessment
- Class discussion assessment
|
||
5 |
Force and Energy
|
Curved mirrors - Characteristics of images formed by concave mirrors
Curved mirrors - Locating images formed by concave mirrors experimentally |
By the end of the
lesson, the learner
should be able to:
- Summarize characteristics of images formed by concave mirrors for different object positions - Create a comprehensive table of image characteristics - Value the systematic organization of scientific information |
- Create a summary table of image characteristics for different object positions (at infinity, beyond C, at C, between C and F, at F, between F and P)
- Discuss the patterns and relationships observed - Compare theoretical predictions with practical observations |
How do image characteristics vary with object position for concave mirrors?
|
- Mentor Integrated Science (pg. 149)
- Concave mirrors - Digital resources - Previous ray diagrams - Mentor Integrated Science (pg. 150) - Mirror holders - Screens - Candles or light sources - Rulers |
- Observation
- Table completion assessment
- Written assignments
|
||
9 |
Midterm |
||||||||
10 | 1 |
Force and Energy
|
Curved mirrors - Terms associated with convex mirrors
|
By the end of the
lesson, the learner
should be able to:
- Identify the terms associated with convex mirrors - Compare the structure of convex mirrors with concave mirrors - Appreciate the differences between concave and convex mirrors |
- Discuss the terms associated with convex mirrors (aperture, center of curvature, pole, principal axis, principal focus, focal length)
- Draw and label the parts of a convex mirror - Compare terms used in convex mirrors with those in concave mirrors |
How does the structure of convex mirrors differ from concave mirrors?
|
- Mentor Integrated Science (pg. 153)
- Convex mirrors - Digital resources - Charts showing the structure of convex mirrors |
- Observation
- Drawings and labels
- Written assignments
|
|
2 |
Force and Energy
|
Curved mirrors - Ray diagrams for convex mirrors
Curved mirrors - Image formation by convex mirrors |
By the end of the
lesson, the learner
should be able to:
- Draw conventional ray diagrams for convex mirrors - Identify the four special rays used in ray diagrams for convex mirrors - Show interest in the ray diagram approach to locate images |
- Draw conventional ray diagrams of convex mirrors
- Identify and draw the four types of rays used in ray diagrams for convex mirrors - Analyze how these rays help locate images |
How do ray diagrams help in locating images formed by convex mirrors?
|
- Mentor Integrated Science (pg. 154)
- Plain paper - Rulers - Pencils - Drawing instruments - Mentor Integrated Science (pg. 156) - Convex mirrors - Digital resources |
- Observation
- Drawing assessment
- Written assignments
|
||
3 |
Force and Energy
|
Curved mirrors - Locating images formed by convex mirrors experimentally
Curved mirrors - Applications of curved mirrors (concave mirrors) |
By the end of the
lesson, the learner
should be able to:
- Set up an experiment to locate images formed by convex mirrors - Record and analyze experimental observations - Show interest in practical verification of theoretical concepts |
- Set up experiments to observe images formed by convex mirrors
- Record observations about the nature, size, and position of images - Compare experimental results with theoretical predictions |
How can we experimentally verify the characteristics of images formed by convex mirrors?
|
- Mentor Integrated Science (pg. 159)
- Convex mirrors - Mirror holders - Objects of various sizes - Rulers - Mentor Integrated Science (pg. 161) - Concave mirrors - Digital resources - Examples of devices using concave mirrors |
- Observation
- Practical assessment
- Written reports
|
||
4 |
Force and Energy
|
Curved mirrors - Applications of curved mirrors (convex mirrors)
Curved mirrors - Applications of curved mirrors (parabolic reflectors) |
By the end of the
lesson, the learner
should be able to:
- Identify applications of convex mirrors in daily life - Explain how the properties of convex mirrors make them suitable for specific applications - Value the role of curved mirrors in enhancing safety and efficiency |
- Research and discuss applications of convex mirrors (driving mirrors, security mirrors, eliminating blind spots)
- Explain how the wide field of view property of convex mirrors relates to their applications - Observe examples of convex mirrors in use |
What are the practical applications of convex mirrors in our daily lives?
|
- Mentor Integrated Science (pg. 162)
- Convex mirrors - Digital resources - Examples of devices using convex mirrors - Mentor Integrated Science (pg. 163) - Examples of devices using parabolic reflectors |
- Observation
- Oral presentations
- Written assignments
|
||
5 |
Force and Energy
|
Waves - Meaning of waves
|
By the end of the
lesson, the learner
should be able to:
- Explain the meaning of waves in science - Describe waves as a transmission of disturbance that carries energy - Show interest in understanding wave phenomena in nature |
- Read the story about John and ripples in the dam
- Discuss what happens when an object is dropped in still water - Observe the movement of water waves and how they transport energy without moving matter |
How are waves applied in our day to day life?
|
- Mentor Integrated Science (pg. 166)
- Basin with water - Small objects to drop in water - Digital resources |
- Observation
- Oral questions
- Written assignments
|
||
11 | 1 |
Force and Energy
|
Waves - Generating waves in nature
Waves - Transverse and longitudinal waves |
By the end of the
lesson, the learner
should be able to:
- Describe how to generate different types of waves - Differentiate between mechanical and electromagnetic waves - Appreciate the presence of waves in everyday phenomena |
- Demonstrate generation of waves using a rope
- Generate water waves in a basin - Observe how sound waves are generated using a speaker - Discuss the difference between mechanical and electromagnetic waves |
How are different types of waves generated in nature?
|
- Mentor Integrated Science (pg. 167)
- Rope - Basin with water - Speakers - Rice or sand - Mentor Integrated Science (pg. 169) - Slinky springs - Cloth pieces for marking - Digital resources showing wave motion |
- Observation
- Practical assessment
- Written reports
|
|
2 |
Force and Energy
|
Waves - Classifying waves
Waves - Amplitude and wavelength |
By the end of the
lesson, the learner
should be able to:
- Classify various waves into transverse and longitudinal categories - Give examples of transverse and longitudinal waves in nature - Value the importance of classification in scientific study |
- Study different wave examples provided in the textbook
- Classify the waves into transverse and longitudinal categories - Research and identify real-world examples of both types of waves - Create a classification chart of common waves |
How are waves classified based on particle movement?
|
- Mentor Integrated Science (pg. 171)
- Digital resources - Charts showing different wave types - Wave demonstration equipment - Mentor Integrated Science (pg. 172) - Wave diagrams - Rulers - Graph paper - Digital simulations |
- Observation
- Classification exercises
- Oral presentations
- Written assignments
|
||
3 |
Force and Energy
|
Waves - Frequency and period
|
By the end of the
lesson, the learner
should be able to:
- Define frequency and period of waves - Describe the relationship between frequency and period - Show interest in quantitative aspects of wave motion |
- Search for the meaning of frequency and period using digital or print resources
- Discuss the motion of a mass on a string to illustrate oscillation - Create displacement-time graphs for oscillating objects - Establish the relationship between frequency and period |
What is the relationship between frequency and period in wave motion?
|
- Mentor Integrated Science (pg. 173)
- Digital resources - String and masses - Stopwatches - Graph paper |
- Observation
- Practical assessment
- Graph analysis
- Written assignments
|
||
4 |
Force and Energy
|
Waves - Practical: Period of waves
Waves - Wave speed |
By the end of the
lesson, the learner
should be able to:
- Determine the period of oscillation experimentally - Calculate frequency from period measurements - Value precision and accuracy in scientific measurements |
- Set up an experiment with a mass on a string
- Time multiple oscillations and calculate average period - Calculate frequency from period measurements - Record and analyze results |
How is the period of oscillation measured experimentally?
|
- Mentor Integrated Science (pg. 175)
- Stands with clamps - Strings - Masses - Stopwatches - Mentor Integrated Science (pg. 176) - Calculators - Wave speed problems - Digital resources - Wave demonstration equipment |
- Observation
- Practical assessment
- Data analysis
- Written reports
|
||
5 |
Force and Energy
|
Waves - Phase of waves
Waves - Oscillation in phase |
By the end of the
lesson, the learner
should be able to:
- Explain the concept of phase in wave motion - Differentiate between in-phase and out-of-phase oscillations - Appreciate the mathematical precision in describing wave relationships |
- Conduct experiments with identical pendulums oscillating in phase
- Observe pendulums with same frequency but different amplitudes - Compare pendulums oscillating in opposite directions - Create and analyze displacement-time graphs for different phase relationships |
What determines whether waves are in phase or out of phase?
|
- Mentor Integrated Science (pg. 178)
- Stands with clamps - Strings and identical masses - Stopwatches - Graph paper - Mentor Integrated Science (pg. 179) - Pendulum apparatus - Measuring equipment |
- Observation
- Practical assessment
- Graph interpretation
- Written reports
|
||
12 | 1 |
Force and Energy
|
Waves - Oscillation out of phase
Waves - Characteristics of waves: straight-line motion |
By the end of the
lesson, the learner
should be able to:
- Set up pendulums oscillating out of phase - Compare the displacement-time graphs of out-of-phase oscillations - Value the mathematical description of wave phenomena |
- Set up identical pendulums oscillating out of phase
- Record and compare the motion patterns - Create displacement-time graphs for out-of-phase oscillations - Analyze the phase difference between oscillations |
What are the characteristics of oscillations that are out of phase?
|
- Mentor Integrated Science (pg. 181)
- Pendulum apparatus - Stopwatches - Measuring equipment - Graph paper - Mentor Integrated Science (pg. 183) - Ripple tank - Water - Paper for tracing - Rulers |
- Observation
- Practical assessment
- Graph construction and analysis
- Written reports
|
|
2 |
Force and Energy
|
Waves - Characteristics of waves: reflection
|
By the end of the
lesson, the learner
should be able to:
- Demonstrate reflection of waves in a ripple tank - Verify that waves obey the laws of reflection - Appreciate that various wave types follow similar behavior patterns |
- Set up a ripple tank with barriers to demonstrate wave reflection
- Observe reflection patterns with barriers at different angles - Compare the incident and reflected waves - Verify the laws of reflection for water waves |
How are waves reflected at barriers?
|
- Mentor Integrated Science (pg. 184)
- Ripple tank - Water - Metal strips as reflectors - Paper for tracing wave patterns |
- Observation
- Practical assessment
- Drawing analysis
- Written reports
|
||
3 |
Force and Energy
|
Waves - Characteristics of waves: bending
Waves - Characteristics of waves: diffraction |
By the end of the
lesson, the learner
should be able to:
- Demonstrate bending (refraction) of waves in a ripple tank - Explain how wave speed changes with medium depth - Show interest in how waves interact with different media |
- Set up a ripple tank with shallow and deep regions
- Generate waves and observe their behavior at the boundary - Measure and compare wavelengths in different depth regions - Relate wavelength changes to speed changes |
How do waves bend when moving between different media?
|
- Mentor Integrated Science (pg. 185)
- Ripple tank - Water - Glass plate to create shallow region - Paper for tracing wave patterns - Mentor Integrated Science (pg. 186) - Metal barriers with adjustable gaps |
- Observation
- Practical assessment
- Drawing analysis
- Written reports
|
||
4 |
Force and Energy
|
Waves - Remote sensing in relation to waves
Waves - Transmission, absorption and reflection in remote sensing |
By the end of the
lesson, the learner
should be able to:
- Describe remote sensing process - Explain the role of waves in remote sensing - Show interest in technological applications of wave properties |
- Search for information about remote sensing using digital resources
- Discuss the remote sensing process and how waves are used - Identify where absorption and reflection occur in remote sensing - Prepare and present findings on remote sensing |
How is remote sensing related to waves?
|
- Mentor Integrated Science (pg. 187)
- Digital resources - Diagrams of remote sensing processes - Video clips on remote sensing - Mentor Integrated Science (pg. 188) - Examples of remote sensing data |
- Observation
- Research reports
- Oral presentations
- Written assignments
|
||
5 |
Force and Energy
|
Waves - Applications of waves in everyday life
|
By the end of the
lesson, the learner
should be able to:
- Identify various applications of waves in everyday life - Explain how wave properties are utilized in different technologies - Appreciate the importance of waves in modern society |
- Research applications of waves in everyday life (communication, medical imaging, entertainment)
- Discuss how specific wave properties are utilized in different applications - Present findings on wave applications - Relate wave theory to practical applications |
What are the practical applications of waves in our everyday life?
|
- Mentor Integrated Science (pg. 190)
- Digital resources - Examples of wave-based technologies - Video clips on wave applications |
- Observation
- Research reports
- Oral presentations
- Written assignments
|
Your Name Comes Here