If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 | 4 |
Rotation
|
Introduction
Centre of rotation |
By the end of the
lesson, the learner
should be able to:
Draw an image of an object under rotation |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 71-73 Discovering secondary pg 44 |
|
1 | 5 |
Rotation
|
Angle of rotation
Rotation in the Cartesian plane |
By the end of the
lesson, the learner
should be able to:
Determine the angle of rotation |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 74-75 Discovering secondary pg 46 |
|
1 | 6 |
Rotation
|
Rotation in the Cartesian plane
|
By the end of the
lesson, the learner
should be able to:
Rotate objects about the 90 |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 76 Discovering secondary pg 47 |
|
2 | 1 |
Rotation
|
Rotation in the Cartesian plane
Rotational symmetry of plane figures |
By the end of the
lesson, the learner
should be able to:
Rotate objects about the +180 |
Defining
Discussions Solving problem Explaining |
Sets
Books Videos Charts Apparatus |
KLB Mathematics
Book Two Pg 77 Discovering secondary pg 47 |
|
2 | 2 |
Rotation
|
Rotational symmetry of solids
Rotation and congruence |
By the end of the
lesson, the learner
should be able to:
Determine the lines of symmetry of solids |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 82-84 Discovering secondary pg 50 |
|
2 | 3-4 |
Similarity and enlargement
|
Similar figures
Similar figures Enlargement |
By the end of the
lesson, the learner
should be able to:
Calculate lengths of objects Use ratio to calculate the lengths of similar figures |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts Sets Books Videos Charts Apparatus |
KLB Mathematics
Book Two Pg 87-88 Discovering secondary pg 52 KLB Mathematics Book Two Pg 88-90 Discovering secondary pg 56 |
|
2 | 5 |
Similarity and enlargement
|
Enlarge objects
|
By the end of the
lesson, the learner
should be able to:
Draw the object and its image under enlargement |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 97-99 Discovering secondary pg 53 |
|
2 | 6 |
Similarity and enlargement
|
Linear scale factor
|
By the end of the
lesson, the learner
should be able to:
Determine the linear scale factor |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 100 Discovering secondary pg 54 |
|
3 | 1 |
Similarity and enlargement
|
Negative scale factor
Positive and negative linear scale factor |
By the end of the
lesson, the learner
should be able to:
Find the negative scale factor |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts Sets |
KLB Mathematics
Book Two Pg 104 Discovering secondary pg 59 |
|
3 | 2 |
Similarity and enlargement
|
Area scale factor
|
By the end of the
lesson, the learner
should be able to:
Determine the area scale factor |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 106-107 Discovering secondary pg 62 |
|
3 | 3-4 |
Similarity and enlargement
|
Area of scale factor
Volume scale factor Volume scale factor Area and volume scale factor |
By the end of the
lesson, the learner
should be able to:
Use area scale factor to solve problems Use volume scale factor to solve problems |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 108 Discovering secondary pg 64 KLB Mathematics Book Two Pg 110-111 Discovering secondary pg 64 |
|
3 | 5 |
Trigonometry
|
Pythagoras Theorem
|
By the end of the
lesson, the learner
should be able to:
Derive Pythagoras Theorem |
Deriving Pythagoras Theorem
|
Chalkboard Charts Illustrating derived theorem
|
KLB BK2 Pg 120 Discovering secondary pg 67
|
|
3 | 6 |
Trigonometry
|
Solutions of problems Using Pythagoras Theorem
Application to real life Situation |
By the end of the
lesson, the learner
should be able to:
Solve problems using Pythagoras Theorem |
Solving problems using Pythagoras theorem
|
Charts illustrating Pythagoras theorem
Mathematical table |
KLB BK2 Pg 121 Discovering secondary pg 67
|
|
4 | 1 |
Trigonometry
|
Trigonometry Tangent, sine and cosines
Trigonometric Table |
By the end of the
lesson, the learner
should be able to:
Define tangent, sine and cosine ratios from a right angles triangle |
Defining what a tangent, Cosine and sine are using a right angled triangle
|
Charts illustrating tangent, sine and cosine
Mathematical table |
KLB BK2 Pg 123,132,133 Discovering secondary pg 70
|
|
4 | 2 |
Trigonometry
|
Angles and sides of a right angled triangle
|
By the end of the
lesson, the learner
should be able to:
Use the sine, cosine and tangent in calculating the length of a right angled triangle and also finding the angle given two sides and unknown angle The length can be obtained if one side is given and an angle |
Using mathematical tables Finding the length using sine ratio Finding the length using Cosine and tangent ratio Finding the angle using Sine, cosine and tangent
|
Mathematical table Charts Chalkboard
|
KLB BK2 Pg 125, 139, 140 Discovering secondary pg
|
|
4 | 3-4 |
Trigonometry
|
Establishing Relationship of sine and cosine of complimentary angles
Sines and cosines of Complimentary angles Relationship between tangent, sine and cosine Trigonometric ratios of special angles 30, 45, 60 and 90 |
By the end of the
lesson, the learner
should be able to:
Establish the relationship of sine and cosine of complimentary angles Relate the three trigonometric ratios, the sine, cosine and tangent |
Using established relationship to solve problems
Relating the three trigonometric ratios |
Chalkboards
Chalkboard Charts illustrating the relationship of sines and cosines of complimentary angles Charts showing the three related trigonometric ratio Charts showing isosceles right angled triangle Charts illustrating Equilateral triangle |
KLB BK2 Pg 145
|
|
4 | 5 |
Trigonometry
|
Application of Trigonometric ratios in solving problems
|
By the end of the
lesson, the learner
should be able to:
Solve trigonometric problems without using tables |
Solving trigonometric problems of special angles
|
Chalkboard
|
KLB BK2 Pg 148
|
|
4 | 6 |
Trigonometry
|
Logarithms of Sines
Logarithms of cosines And tangents |
By the end of the
lesson, the learner
should be able to:
Read the logarithms of sines |
Solving problems by reading logarithm table of sines
|
Chalkboard Mathematical tables
Chalkboard Mathematical table |
KLB BK2 Pg 149
|
|
5 | 1 |
Trigonometry
|
Reading tables of logarithms of sines, cosines and tangents
Application of trigonometry to real life situations |
By the end of the
lesson, the learner
should be able to:
Read the logarithms of sines, cosines and tangents from tables |
Solving problems through reading the table of logarithm of sines, cosines and tangents
|
Chalkboard Mathematical table
Mathematical table |
KLB BK2 Pg 149-152
|
|
5 | 2 |
Trigonometry
|
Area of a triangle Area of a triangle given the base and height (A = ? bh)
|
By the end of the
lesson, the learner
should be able to:
Calculate the are of a triangle given the base and height |
Calculating the area of a triangle given the base and height
|
Chart illustrating worked problem Chalkboard
|
KLB BK2 Pg 155
|
|
5 | 3-4 |
Trigonometry
|
Area of a triangle using the formula (A = ? absin?)
Area of a triangle using the formula A = ?s(s-a)(s-b)(s-c) Area of Quadrilateral and Polygons Area of a square, rectangle, rhombus, parallelogram and trapezium |
By the end of the
lesson, the learner
should be able to:
- Derive the formula ? absinc - Using the formula derived in calculating the area of a triangle given two sides and an included angle Calculate the are of a triangle, square, rectangle, rhombus, parallelogram and trapezium |
Deriving the formula ? absinc Using the formula to calculate the area of a triangle given two sides and an included angle
Calculating the area of a triangle, square, rectangle, rhombus, parallelogram and trapezium |
Charts illustrating a triangle with two sides and an included angle Charts showing derived formula
Charts illustrating a triangle with three sides Charts illustrating a worked example i.e. mathematical table Charts illustrating formula used in calculating the areas of the quadrilateral |
KLB BK2 Pg 156
KLB BK2 Pg 161-163 |
|
5 | 5 |
Trigonometry
|
Area of a kite
Area of other polygons (regular polygon) e.g. Pentagon |
By the end of the
lesson, the learner
should be able to:
Find the area of a kite |
Calculating the area of a Kite
|
Model of a kite
Mathematical table Charts illustrating Polygons |
KLB BK2 Pg 163
|
|
5 | 6 |
Trigonometry
|
Area of irregular Polygon
Area of part of a circle Area of a sector (minor sector and a major sector) |
By the end of the
lesson, the learner
should be able to:
Find the area of irregular polygons |
Finding the area of irregular polygons
|
Charts illustrating various irregular polygons Polygonal shapes
Charts illustrating sectors |
KLB BK2 Pg 166
|
|
6 | 1 |
Trigonometry
|
Defining a segment of a circle Finding the area of a segment of a circle
|
By the end of the
lesson, the learner
should be able to:
- Define what a segment of a circle is - Find the area of a segment of a circle |
Finding the area of a segment by first finding the area of a sector less the area of a smaller sector given R and r and angle ?
|
Chart illustrating a Segment
|
KLB BK2 Pg 169-170
|
|
6 | 2 |
Trigonometry
|
Area of a common region between two circles given the angles and the radii
Area of a common region between two circles given only the radii of the two circles and a common chord |
By the end of the
lesson, the learner
should be able to:
Find the area of common region between two circles given the angles ? Education Plus Agencies |
Calculating the area of a segment
|
Charts illustrating common region between the circles Use of a mathematical table during calculation
Charts illustrating common region between two intersecting circles |
KLB BK 2 Pg 175
|
|
6 | 3-4 |
Trigonometry
|
Surface area of solids Surface area of prisms Cylinder (ii) Triangular prism (iii) Hexagonal prism
Area of a square based Pyramid Surface area of a Rectangular based Pyramid |
By the end of the
lesson, the learner
should be able to:
Define prism and hence be in a position of calculating the surface area of some prisms like cylinder, triangular prism and hexagonal prism Find the surface area of a rectangular based pyramid |
Defining a prism Calculating the surface area of the prisms
Finding the surface area of a rectangular based pyramid |
Models of cylinder, triangular and hexagonal prisms
Models of a square based pyramid Models of a Rectangular based pyramid |
KLB BK 2 Pg 177
KLB BK 2 Pg 179-180 |
|
6 | 5 |
Trigonometry
|
Surface area of a cone using the formula A = ?r2 + ?rl
Surface area of a frustrum of a cone and a pyramid |
By the end of the
lesson, the learner
should be able to:
Find the total surface area of the cone by first finding the area of the circular base and then the area of the curved surface |
Finding the area of the circular part Finding the area of the curved part Getting the total surface Area
|
Models of a cone
Models of frustrum of a cone and a pyramid |
KLB BK 2 Pg 181
|
|
6 | 6 |
Trigonometry
|
Finding the surface area of a sphere
Surface area of a Hemispheres |
By the end of the
lesson, the learner
should be able to:
Find the surface area of a sphere given the radius of a sphere |
Finding the surface area of a sphere
|
Models of a sphere Charts illustrating formula for finding the surface area of a sphere
Models of a hemisphere |
KLB BK 2 Pg 183
|
|
7 | 1 |
Trigonometry
|
Volume of Solids Volume of prism (triangular based prism)
|
By the end of the
lesson, the learner
should be able to:
Find the volume of a triangular based prism |
Finding the volume of a triangular based prism
|
Models of a triangular based prism
|
KLB BK 2 Pg 186
|
|
7 | 2 |
Trigonometry
|
Volume of prism (hexagonal based prism) given the sides and angle
Volume of a pyramid (square based and rectangular based) |
By the end of the
lesson, the learner
should be able to:
Find the volume of a hexagonal based prism |
Calculating the volume of an hexagonal prism
|
Models of hexagonal based prism
Models of square and Rectangular based Pyramids |
KLB BK 2 Pg 187
|
|
7 | 3-4 |
Trigonometry
|
Volume of a cone
Volume of a frustrum of a cone Volume of a frustrum of a pyramid |
By the end of the
lesson, the learner
should be able to:
Find the volume of a cone Find the volume of a frustrum of a Pyramid |
Finding the volume of a cone
Finding volume of a full pyramid Finding volume of cutoff pyramid Find volume of the remaining fig (frustrum) by subtracting i.e. Vf = (V ? v) |
Model of a cone
Models of a frustrum of a cone Models of frustrum of a pyramid |
KLB BK 2 Pg 191
KLB BK 2 Pg 194 |
|
7 | 5 |
Trigonometry
|
Volume of a sphere (v = 4/3?r3)
Volume of a Hemisphere {(v = ? (4/3?r3)} |
By the end of the
lesson, the learner
should be able to:
Find the volume of sphere given the radius of the sphere |
Finding the volume of a Sphere
|
Model of a sphere Mathematical table
Models of hemisphere |
KLB BK 2 Pg 195
|
|
7 | 6 |
Trigonometry
Area of A Triangle |
Application of area of triangles to real life
Area = |
By the end of the
lesson, the learner
should be able to:
Use the knowledge of the area of triangles in solving problems in real life situation |
Solving problems in real life using the knowledge of the area of triangle
|
Mathematical table Chart illustrating formula used
Protractor Ruler Right corners Mathematical tables |
KLB BK 2 Pg 159
|
|
8 | 1 |
Area of A Triangle
|
Solve problems involving =
|
By the end of the
lesson, the learner
should be able to:
solve problems involving area of triangles using the formula Area = |
Discussions
Drawing triangles Measuring lengths/angles Calculating area |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 155-157
|
|
8 | 2 |
Area of A Triangle
|
A =?s(s-a) (s-b) (s-c)
Problem solving |
By the end of the
lesson, the learner
should be able to:
find the area of a triangle given the three sides |
Discussions
Drawing triangles Measuring lengths/angles Calculating area |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 155-157
|
|
8 | 3-4 |
Area of Quadrilaterals
|
Area of parallelogram
Area of Rhombus Area of trapezium and kite |
By the end of the
lesson, the learner
should be able to:
find the area of quadrilaterals like trapeziums, parallelogram etc. by dividing the shape of triangles find the area of a regular polygon. |
Drawing trapeziums/polygons
Measuring lengths/angles Reading mathematical tables Discussions |
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables |
KLB Maths Bk2 Pg. 160
KLB Maths Bk2 Pg. 161 |
|
8 | 5 |
Area of Quadrilaterals
|
Area of regular polygons
Problem solving |
By the end of the
lesson, the learner
should be able to:
find the area of a regular polygon by using the formula A= |
Drawing trapeziums/polygons
Measuring lengths/angles Reading mathematical tables Discussions |
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables Chalkboard illustrations Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
8 | 6 |
Area of Part of a Circle
|
Area of a sector
|
By the end of the
lesson, the learner
should be able to:
find area of a sector |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a sector |
KLB Maths Bk2 Pg. 167-169
|
|
9 | 1 |
Area of Part of a Circle
|
Area of a segment
Common region between two circles |
By the end of the
lesson, the learner
should be able to:
find area of a segment |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a minor segment |
KLB Maths Bk2 Pg. 167-169
|
|
9 | 2 |
Area of Part of a Circle
|
Common region between two circles
Problem solving |
By the end of the
lesson, the learner
should be able to:
find the area of the common region between two circles and solve problems related to that |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a minor segment Chart illustrating the area of a minor segment Chalkboard illustrations |
KLB Maths Bk2 Pg. 167-169
|
|
9 |
Midterm break |
|||||||
10 | 1 |
Surface Area of Solids
|
Surface area of prisms
|
By the end of the
lesson, the learner
should be able to:
find the surface area of a prism. |
Drawing prisms
Measuring lengths Opening prisms to form nets Discussions Calculating area |
Prism Chalkboard illustrations
|
KLB Maths Bk2 Pg. 177
|
|
10 | 2 |
Surface Area of Solids
|
Surface area of pyramid
Surface area of a cone |
By the end of the
lesson, the learner
should be able to:
find the surface area of a pyramid |
Drawing pyramids
Measuring lengths/ angles Opening pyramids to form nets Discussions Calculating area |
Pyramids with square base, rectangular base, triangular base
Cone |
KLB Maths Bk2 Pg. 178
|
|
10 | 3-4 |
Surface Area of Solids
|
Surface area of frustrum with circular base
Surface area of frustrum with square base Surface area of frustrum with rectangular base |
By the end of the
lesson, the learner
should be able to:
find the surface area of frustrum with circular base find the surface area of frustrum with rectangular base |
Drawing cones/frustums
Making cones/frustums Measuring lengths/ angles Discussions |
Chart illustrating the surface area of a frustrum
Chart illustrating frustrum with a square base Chart illustrating frustrum with a rectangular base |
KLB Maths Bk2 Pg. 181-283
KLBMathematics Bk2 Discovering Secondary Mathematics Bk2 KLB Maths Bk2 Pg. 181-183 |
|
10 | 5 |
Surface Area of Solids
|
Surface area of spheres
Problem solving |
By the end of the
lesson, the learner
should be able to:
find the surface area of a sphere |
Sketching spheres
Making spheres Measuring diameters/ radii of spheres Discussions |
Chalkboard illustrations
Past paper questions |
KLB Maths Bk2 Pg. 183
|
|
10 | 6 |
Volume of Solids
|
Volume of prism
Volume of pyramid |
By the end of the
lesson, the learner
should be able to:
find the volume of a prism |
Identifying prisms
Identifying the cross-sectional area Drawing/sketching prisms |
Prism
Pyramid |
KLB Maths Bk2 Pg. 186-188
|
|
11 | 1 |
Volume of Solids
|
Volume of a cone
|
By the end of the
lesson, the learner
should be able to:
find the volume of a cone |
Making cones/frustums
Opening cones/frustums to form nets |
Cone
|
KLB Maths Bk2 Pg. 191
|
|
11 | 2 |
Volume of Solids
|
Volume of a sphere
Volume of frustrum |
By the end of the
lesson, the learner
should be able to:
find the volume of a sphere |
Identifying spheres
Sketching spheres Measuring radii/ diameters Discussions |
Sphere
Frustrum with circular base |
KLB Maths Bk2 Pg. 195
|
|
11 | 3-4 |
Volume of Solids
|
Volume of frustrum with a square base
Volume of frustrum with a rectangular base Application to real life situation |
By the end of the
lesson, the learner
should be able to:
find the volume of a frustrum with a square base apply the knowledge of volume of solids to real life situations. |
Making cones/frustums
Opening cones/frustums to form nets |
Frustrum with square base
Frustrum with rectangular base Models of pyramids, prism, cones and spheres |
KLB Maths Bk2 Pg. 192-193
KLB Maths Bk2 Pg. 193-194 |
|
11 | 5 |
Volume of Solids
Quadratic Expressions and Equations |
Problem solving
Expansion of Algebraic Expressions |
By the end of the
lesson, the learner
should be able to:
solve problems on volume of solids |
Making cones/frustums
Opening cones/frustums to form nets |
Past paper questions
Real-life experiences Worked out expressions |
KLB Maths Bk2 Pg. 196
|
|
11 | 6 |
Quadratic Expressions and Equations
|
Quadratic identities
|
By the end of the
lesson, the learner
should be able to:
derive the three Algebraic identities |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 204-205
|
|
12 | 1 |
Quadratic Expressions and Equations
|
Application of identities
Factorise the Identities |
By the end of the
lesson, the learner
should be able to:
identify and use the three Algebraic identities |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 204-205
|
|
12 | 2 |
Quadratic Expressions and Equations
|
Factorise other quadratic expressions
Factorisation of expressions of the form k2-9y2 |
By the end of the
lesson, the learner
should be able to:
factorise quadratic expressions |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Chart illustrating factorization of a quadratic expression
Real-life experiences Worked out expressions |
KLB Maths Bk2 Pg. 119-122
|
|
12 | 3-4 |
Quadratic Expressions and Equations
|
Simplification of an expression by factorisation
Solving quadratic equations The formation of quadratic equations |
By the end of the
lesson, the learner
should be able to:
simplify a quadratic expression by factorisation solve quadratic equations |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 205-208
KLB Maths Bk2 Pg. 208 |
|
12 | 5 |
Quadratic Expressions and Equations
|
Formation and solving of quadratic equations from word problems
Solving on quadratic equations |
By the end of the
lesson, the learner
should be able to:
form and solve quadratic equations from word problems |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 208-210
|
|
12 | 6 |
Quadratic Expressions and Equations
|
Forming quadratic equations from the roots
|
By the end of the
lesson, the learner
should be able to:
form quadratic equations given the roots of the equation |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 210
|
|
13-14 |
End term examinations |
Your Name Comes Here