If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1 |
CHEMICAL FAMILIES
|
Alkaline Earth metals
Atomic and ionic radii of alkaline earth metals.
|
By the end of the
lesson, the learner
should be able to:
Identify alkaline earth metals. State changes in atomic and ionic radii of alkaline earth metals. |
Q/A: Elements of group I and their electron configuration.
Examine a table of elements, their symbols and atomic & ionic radii. Make deductions from the table. |
Some alkaline earth metals.
|
K.L.B. BOOK II pp 34
|
|
2 | 2-3 |
CHEMICAL FAMILIES
|
Alkaline Earth metals
Atomic and ionic radii of alkaline earth metals.
Physical properties of alkaline earth metals. |
By the end of the
lesson, the learner
should be able to:
Identify alkaline earth metals. State changes in atomic and ionic radii of alkaline earth metals. State and explain trends in physical properties of alkaline earth metals. |
Q/A: Elements of group I and their electron configuration.
Examine a table of elements, their symbols and atomic & ionic radii. Make deductions from the table. Examine a table showing comparative physical properties of Be, Mg, Ca. Q/A: Teacher asks probing questions as students refer to the table for answers. Detailed discussion of physical properties of alkaline earth metals. |
Some alkaline earth metals.
|
K.L.B. BOOK II pp 34
K.L.B. BOOK II P. 35 |
|
2 | 4 |
CHEMICAL FAMILIES
|
Electrical properties of alkaline earth metals.
|
By the end of the
lesson, the learner
should be able to:
To describe electrical properties of alkaline earth metals. |
Teacher demonstration: -
To show alkaline metals are good conductors of electric charge. |
Alkaline earth metals.
|
K.L.B. BOOK IIP. 37
|
|
3 | 1 |
CHEMICAL FAMILIES
|
Chemical properties of alkaline earth metals.
Reaction of alkaline earth metals with oxygen.
|
By the end of the
lesson, the learner
should be able to:
To describe reaction of alkaline earth metals with oxygen |
Q/A: Review reactions of Mg, Ca, with oxygen.
The corresponding word and then chemical equations are then written and their correctness verified by the teacher. |
text book
|
K.L.B. BOOK IIP. 38
|
|
3 | 2-3 |
CHEMICAL FAMILIES
|
Chemical properties of alkaline earth metals.
Reaction of alkaline earth metals with oxygen.
Chemical properties of alkaline earth metals. Reaction of alkaline earth metals with water. |
By the end of the
lesson, the learner
should be able to:
To describe reaction of alkaline earth metals with oxygen To describe reaction of alkaline earth metals with water. |
Q/A: Review reactions of Mg, Ca, with oxygen.
The corresponding word and then chemical equations are then written and their correctness verified by the teacher. Q/A: Review reaction of metals with water. Writing down word and balanced chemical equations for the reactions. Deduce and discuss the order of reactivity down the group. |
text book
Some alkaline earth metals. |
K.L.B. BOOK IIP. 38
K.L.B. BOOK IIP. 39 |
|
3 | 4 |
CHEMICAL FAMILIES
|
Chemical properties of alkaline earth metals.
Reaction of alkaline earth metals with water.
|
By the end of the
lesson, the learner
should be able to:
To describe reaction of alkaline earth metals with water. |
Q/A: Review reaction of metals with water.
Writing down word and balanced chemical equations for the reactions. Deduce and discuss the order of reactivity down the group. |
Some alkaline earth metals.
|
K.L.B. BOOK IIP. 39
|
|
4 | 1 |
CHEMICAL FAMILIES
|
Reaction of alkaline earth metals with chlorine gas.
|
By the end of the
lesson, the learner
should be able to:
To write balanced equations for reaction of alkaline earth metals with chlorine gas. |
Teacher demonstration- Reaction of sodium with chlorine in a fume chamber.
Q/A: Students to predict a similar reaction between potassium and chlorine. Word and balanced chemical equations for various reactions. Supervised practice. |
Sodium, chlorine.
|
K.L.B. BOOK II P. 41
|
|
4 | 2-3 |
CHEMICAL FAMILIES
|
Reaction of alkaline earth metals with dilute acids.
|
By the end of the
lesson, the learner
should be able to:
To write balanced equations for reactions of alkaline earth metals with dilute acids. |
Changing word to chemical equations.
Supervised practice. |
revision book
|
K.L.B. BOOK II PP. 43
|
|
4 | 4 |
CHEMICAL FAMILIES
|
Chemical formulae of alkaline earth metals.
|
By the end of the
lesson, the learner
should be able to:
Write chemical formulae for compounds of alkaline earth metals. Explain formation of hydroxides, oxides and chlorides of alkaline earth metals. |
Exercise: Completing a table of hydroxides, oxides and chlorides of alkaline earth metals.
Discuss combination of ions of alkaline earth metals with anions. |
text book
|
K.L.B. BOOK II PP. 45-47
|
|
5 | 1 |
CHEMICAL FAMILIES
|
Uses of some alkaline earth metals and their compounds.
|
By the end of the
lesson, the learner
should be able to:
State uses of alkaline earth metals. |
Descriptive approach: Teacher elucidates uses of alkaline earth metals.
|
text book
|
K.L.B. BOOK II PP. 45-47
|
|
5 | 2-3 |
CHEMICAL FAMILIES
|
Halogens.
Physical properties of halogens.
Comparative physical properties of halogens. |
By the end of the
lesson, the learner
should be able to:
Identify halogens in the periodic table. Give examples of halogens. Identify physical states of halogens. To state and explain the trends in physical properties of halogens. |
Teacher demonstration: - To examine electrical properties of iodine, solubility in water of chlorine.
Examine a comparative table of physical properties of halogens. Discuss the deductions made from the table. |
Iodine crystals, electrical wire, a bulb.
text book |
KLB BK II
P. 47 K.L.B. BOOK II P. 47 |
|
5 | 4 |
CHEMICAL FAMILIES
|
Chemical properties of halogens.
|
By the end of the
lesson, the learner
should be able to:
To describe laboratory preparation of chlorine gas. To describe reaction of halogens with metals. |
Teacher demonstration: - preparation of chlorine gas.
Reaction of chlorine and iron wool. Reaction of bromine and iron wool. Reaction of iodine and iron wool. Observe the rate of these reactions; hence deduce order of their reactivity of halogens. |
Chlorine, iron wool, bromine.
|
K.L.B. BOOK IIPP. 48-50
|
|
6 | 1 |
CHEMICAL FAMILIES
|
Equations of reaction of halogens with metals.
|
By the end of the
lesson, the learner
should be able to:
To write balanced chemical equations of reactions involving halogens. |
Re-write word equations as chemical equations then balance them.
Supervised practice. |
text book
|
K.L.B. BOOK II P. 50
|
|
6 | 2-3 |
CHEMICAL FAMILIES
|
Reaction of halogens with water.
|
By the end of the
lesson, the learner
should be able to:
To describe reaction of halogens with water and the results obtained. |
Bubbling chlorine gas through water.
Carry out litmus test for the water. Explain the observations. |
Chlorine gas, litmus papers.
|
K.L.B. BOOK II P. 51
|
|
6 | 4 |
CHEMICAL FAMILIES
|
Some uses of halogens and their compounds.
|
By the end of the
lesson, the learner
should be able to:
To state uses of halogens and their compounds. |
Teacher elucidates uses of halogens and their compounds.
|
text book
|
K.L.B. BOOK II pp 52
|
|
7 | 1 |
CHEMICAL FAMILIES
|
Noble Gases.
Comparative physical properties of noble gases.
Uses of noble gases. |
By the end of the
lesson, the learner
should be able to:
To describe physical properties of noble gases. To explain physical properties of noble gases. |
Make A comparative analysis of tabulated physical properties of noble gases.
|
text book
|
K.L.B. BOOK IIPP. 52-53
|
|
7 | 2-3 |
STRUCTURE & BONDING
|
Chemical bonds.
Ionic bond.
Ionic bond representation. Grant ionic structures. |
By the end of the
lesson, the learner
should be able to:
Describe role of valence electrons in determining chemical bonding. Explain formation of ionic bonding. Describe the crystalline ionic compound. Give examples of ionic substances. |
Q/A: Review valence electrons of atoms of elements in groups I, II, III, VII and VIII.
Q/A: Review group I and group VII elements. Discuss formation of ionic bond. Discuss the group ionic structures of NaCl. Teacher gives examples of other ionic substances: KNO3, potassium bromide, Ca (NO3)2, sodium iodide. |
text book
Chart- dot and cross diagrams. Models for bonding. Giant sodium chloride model. |
K.L.B. BOOK IIP54
PP 57-58 K.L.B. BOOK II PP 56-58 |
|
7 | 4 |
STRUCTURE & BONDING
|
Physical properties of ionic compounds.
Covalent bond. |
By the end of the
lesson, the learner
should be able to:
Describe physical properties of ionic compounds. Explain the differences in the physical properties of ionic compounds. |
Analyse tabulated comparative physical properties of ionic compounds.
Teacher asks probing questions. |
text book
|
K.L.B. BOOK IIPP 58-59
|
|
8 | 1 |
STRUCTURE & BONDING
|
Co-ordinate bond.
|
By the end of the
lesson, the learner
should be able to:
To describe the co-ordinate bond To represent co-ordinate bond diagrammatically. |
Exposition- teacher explains the nature of co-ordinate bond.
Students represent co-ordinate bond diagrammatically. |
text book
|
K.L.B. BOOK II P 65
|
|
8 | 2-3 |
STRUCTURE & BONDING
|
Molecular structure.
Trend in physical properties of molecular structures. Giant atomic structure in diamond. |
By the end of the
lesson, the learner
should be able to:
To describe the molecular structure. To give examples of substance exhibiting molecular structure To describe giant atomic structure in diamond. To state uses of diamond. |
Discussion ? To explain formation of the giant structure and give examples of substance exhibiting molecular structure.
Diagrammatic representation of diamond. Discuss uses of diamond. |
text book
Sugar, naphthalene, iodine rhombic sulphur. Diagrams in textbooks. |
K.L.B. BOOK IIP 65
K.L.B. BOOK II P 69 |
|
8 | 4 |
STRUCTURE & BONDING
|
Giant atomic structure in graphite.
Metallic bond. Uses of some metals. |
By the end of the
lesson, the learner
should be able to:
To describe giant atomic structure in graphite. To state uses of graphite. |
Diagrammatic representation of graphite.
Discuss uses of graphite. |
Diagrams in textbooks.
text book |
K.L.B. BOOK II pp 69
|
|
9 | 1 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
|
Physical properties of elements in periods.
|
By the end of the
lesson, the learner
should be able to:
To compare electrical conductivity of elements in period 3 |
Group experiments- Construct electrical circuits incorporating a magnesium ribbon, then aluminum foil, then sulphur in turns.
The brightness of the bulb is noted in each case. Discuss the observations in terms of delocalised electrons. |
The periodic table.
|
K.L.B. BOOK IIP. 76
|
|
9-10 |
Half Term |
|||||||
10 | 2-3 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
|
Physical properties of elements in period 3.
|
By the end of the
lesson, the learner
should be able to:
To compare other physical properties of elements across period 3. |
Analyse comparative physical properties presented in form of a table.
Explain the trend in the physical properties given. |
The periodic table.
|
K.L.B. BOOK II P. 77
|
|
10 | 4 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
|
Chemical properties of elements in period 3.
|
By the end of the
lesson, the learner
should be able to:
To compare reactions of elements in period 3 with oxygen. |
Q/A: Products of reactions of Na, Mg, Al, P, & S with oxygen.
Discuss the trend in their reactivity; identify basic and acidic oxides. Exercise ? balanced chemical equations for the above reactions. |
The periodic table.
|
K.L.B. BOOK II PP. 79-80
|
|
11 | 1 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
|
Chemical properties of elements in the third period.
|
By the end of the
lesson, the learner
should be able to:
To compare reactions of elements in period 3 with water |
Q/A: Review reaction of sodium, Mg, chlorine, with water.
Infer that sodium is most reactive metal; non-metals do not react with water. |
The periodic table.
|
K.L.B. BOOK II PP. 80-81
|
|
11 | 2-3 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
SALTS |
Oxides of period 3 elements.
Chlorides of period 3 elements. Types of salts. |
By the end of the
lesson, the learner
should be able to:
To identify bonds across elements in period 3. To explain chemical behavior of their oxide. Define a salt. Describe various types of salts and give several examples in each case. |
Comparative analysis, discussion and explanation.
Descriptive approach. Teacher exposes new concepts. |
The periodic table.
text book |
K.L.B. BOOK II P. 84
K.L.B. BOOK II P. 91 |
|
11 | 4 |
SALTS
|
Solubility of salts in water.
|
By the end of the
lesson, the learner
should be able to:
To test solubility of various salts in cold water/warm water. |
Class experiments- Dissolve salts in 5 cc of water.
Record the solubility in a table, Analyse the results. |
Sulphates, chlorides, nitrates, carbonates of various metals.
|
K.L.B. BOOK II PP. 92-93
|
|
12 | 1 |
SALTS
|
Solubility of bases in water.
|
By the end of the
lesson, the learner
should be able to:
To test solubility of various bases in water. To carry out litmus test on the resulting solutions. |
Class experiments- Dissolve salts in 5cc of water.
Record the solubility in a table, Carry out litmus tests. Discuss the results. |
Oxides, hydroxides, of various metals, litmus papers.
|
K.L.B. BOOK IIPP. 94-95
|
|
12 | 2-3 |
SALTS
|
Methods of preparing various salts.
|
By the end of the
lesson, the learner
should be able to:
To describe various methods of preparing some salts. |
Experimental and descriptive treatments of preparation of salts e.g. ZnSO4, CuSO4, NaCl and Pb(NO3)2.
|
CuO, H2SO4, HCl, NaOH, PbCO3, dil HNO3.
|
K.L.B. BOOK II pp96
|
|
12 | 4 |
SALTS
|
Direct synthesis of a salts.
|
By the end of the
lesson, the learner
should be able to:
To describe direct synthesis of a salt. To write balanced equations for the reactions. |
Group experiments- preparation of iron (II) sulphide by direct synthesis.
Give other examples of salts prepared by direct synthesis. Students write down corresponding balanced equations. |
Iron,
Sulphur |
K.L.B. BOOK II P. 104
|
|
13 | 1 |
SALTS
|
Ionic equations.
Effects of heat on carbonates. |
By the end of the
lesson, the learner
should be able to:
To identify spectator ions in double decomposition reactions. To write ionic equations correctly. |
Q/A: Ions present in given reactants.
Deduce the products of double decomposition reactions. Give examples of equations. Supervised practice. |
PbNO3, MgSO4 solutions.
Various carbonates. |
K.L.B. BOOK II
|
|
13 | 2-3 |
SALTS
|
Effects of heat on nitrates.
Effects of heat on sulphates. Hygroscopy, Deliquescence and Efflorescence. |
By the end of the
lesson, the learner
should be able to:
To state effects of heat on nitrates. To predict products resulting from heating metal nitrates. To state effects of heat on sulphates. To predict products results from heating metal sulphates. |
Group experiments- To investigate effects of heat on various metal nitrates.
Observe various colour changes before, during and after heating. Write equations for the reactions. Group experiments- To investigate effects of heat on various sulphates. Observe various colour changes before, during and after heating. Write equations for the reactions. |
Common metal nitrates.
Common sulphates. |
K.L.B. BOOK II PP. 110-111
K.L.B. BOOK II P. 113 |
|
13 | 4 |
SALTS
|
Uses of salts.
|
By the end of the
lesson, the learner
should be able to:
To state uses of salts |
Teacher elucidates uses of salts.
|
|
K.L.B. BOOK II P. 114
|
Your Name Comes Here