If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 | 3 |
Trigonometry
|
Pythagoras Theorem
Solutions of problems Using Pythagoras Theorem |
By the end of the
lesson, the learner
should be able to:
Derive Pythagoras Theorem |
Deriving Pythagoras Theorem
|
Chalkboard Charts Illustrating derived theorem
Charts illustrating Pythagoras theorem |
KLB BK2 Pg 120 Discovering secondary pg 67
|
|
1 | 4 |
Trigonometry
|
Application to real life Situation
Trigonometry Tangent, sine and cosines |
By the end of the
lesson, the learner
should be able to:
Use the formula A = ?s(s-a)(s-b)(s-c) to solve problems in real life |
Solving problems in real life using the formula A = ?s(s-a)(s-b)(s-c)
|
Mathematical table
Charts illustrating tangent, sine and cosine |
KLB BK2 Pg 159 Discovering secondary pg 67
|
|
1 | 5 |
Trigonometry
|
Trigonometric Table
Angles and sides of a right angled triangle |
By the end of the
lesson, the learner
should be able to:
Use trigonometric tables to find the sine, cosine and tangent |
Reading trigonometric tables of sines, cosines and tangent
|
Mathematical table
Mathematical table Charts Chalkboard |
KLB BK2 Pg 127, 138, 139 Discovering secondary pg 71
|
|
1 | 6 |
Trigonometry
|
Establishing Relationship of sine and cosine of complimentary angles
Sines and cosines of Complimentary angles |
By the end of the
lesson, the learner
should be able to:
Establish the relationship of sine and cosine of complimentary angles |
Using established relationship to solve problems
|
Chalkboards
Chalkboard Charts illustrating the relationship of sines and cosines of complimentary angles |
KLB BK2 Pg 145
|
|
2 | 1 |
Trigonometry
|
Relationship between tangent, sine and cosine
Trigonometric ratios of special angles 30, 45, 60 and 90 |
By the end of the
lesson, the learner
should be able to:
Relate the three trigonometric ratios, the sine, cosine and tangent |
Relating the three trigonometric ratios
|
Charts showing the three related trigonometric ratio
Charts showing isosceles right angled triangle Charts illustrating Equilateral triangle |
KLB BK2 Pg 145
|
|
2 | 2 |
Trigonometry
|
Application of Trigonometric ratios in solving problems
Logarithms of Sines |
By the end of the
lesson, the learner
should be able to:
Solve trigonometric problems without using tables |
Solving trigonometric problems of special angles
|
Chalkboard
Chalkboard Mathematical tables |
KLB BK2 Pg 148
|
|
2 | 3 |
Trigonometry
|
Logarithms of cosines And tangents
|
By the end of the
lesson, the learner
should be able to:
Read the logarithm of cosines and tangents from mathematical tables |
Reading logarithms of cosine and tangent from mathematical table
|
Chalkboard Mathematical table
|
KLB BK2 Pg 150-152
|
|
2 | 4 |
Trigonometry
|
Reading tables of logarithms of sines, cosines and tangents
Application of trigonometry to real life situations |
By the end of the
lesson, the learner
should be able to:
Read the logarithms of sines, cosines and tangents from tables |
Solving problems through reading the table of logarithm of sines, cosines and tangents
|
Chalkboard Mathematical table
Mathematical table |
KLB BK2 Pg 149-152
|
|
2 | 5 |
Trigonometry
|
Area of a triangle Area of a triangle given the base and height (A = ? bh)
Area of a triangle using the formula (A = ? absin?) |
By the end of the
lesson, the learner
should be able to:
Calculate the are of a triangle given the base and height |
Calculating the area of a triangle given the base and height
|
Chart illustrating worked problem Chalkboard
Charts illustrating a triangle with two sides and an included angle Charts showing derived formula |
KLB BK2 Pg 155
|
|
2 | 6 |
Trigonometry
|
Area of a triangle using the formula A = ?s(s-a)(s-b)(s-c)
Area of Quadrilateral and Polygons Area of a square, rectangle, rhombus, parallelogram and trapezium |
By the end of the
lesson, the learner
should be able to:
Solve problems on the area of a triangle Given three sizes using the formula A = ?s(s-a)(s-b)(s-c) |
Solving problems on the area of triangle given three sides of a triangle
|
Charts illustrating a triangle with three sides Charts illustrating a worked example i.e. mathematical table
Charts illustrating formula used in calculating the areas of the quadrilateral |
KLB BK2 Pg 157-158
|
|
3 | 1 |
Trigonometry
|
Area of a kite
Area of other polygons (regular polygon) e.g. Pentagon |
By the end of the
lesson, the learner
should be able to:
Find the area of a kite |
Calculating the area of a Kite
|
Model of a kite
Mathematical table Charts illustrating Polygons |
KLB BK2 Pg 163
|
|
3 | 2 |
Trigonometry
|
Area of irregular Polygon
Area of part of a circle Area of a sector (minor sector and a major sector) |
By the end of the
lesson, the learner
should be able to:
Find the area of irregular polygons |
Finding the area of irregular polygons
|
Charts illustrating various irregular polygons Polygonal shapes
Charts illustrating sectors |
KLB BK2 Pg 166
|
|
3 | 3 |
Trigonometry
|
Defining a segment of a circle Finding the area of a segment of a circle
|
By the end of the
lesson, the learner
should be able to:
- Define what a segment of a circle is - Find the area of a segment of a circle |
Finding the area of a segment by first finding the area of a sector less the area of a smaller sector given R and r and angle ?
|
Chart illustrating a Segment
|
KLB BK2 Pg 169-170
|
|
3 | 4 |
Trigonometry
|
Area of a common region between two circles given the angles and the radii
Area of a common region between two circles given only the radii of the two circles and a common chord |
By the end of the
lesson, the learner
should be able to:
Find the area of common region between two circles given the angles ? Education Plus Agencies |
Calculating the area of a segment
|
Charts illustrating common region between the circles Use of a mathematical table during calculation
Charts illustrating common region between two intersecting circles |
KLB BK 2 Pg 175
|
|
3 | 5 |
Trigonometry
|
Surface area of solids Surface area of prisms Cylinder (ii) Triangular prism (iii) Hexagonal prism
Area of a square based Pyramid |
By the end of the
lesson, the learner
should be able to:
Define prism and hence be in a position of calculating the surface area of some prisms like cylinder, triangular prism and hexagonal prism |
Defining a prism Calculating the surface area of the prisms
|
Models of cylinder, triangular and hexagonal prisms
Models of a square based pyramid |
KLB BK 2 Pg 177
|
|
3 | 6 |
Trigonometry
|
Surface area of a Rectangular based Pyramid
Surface area of a cone using the formula A = ?r2 + ?rl |
By the end of the
lesson, the learner
should be able to:
Find the surface area of a rectangular based pyramid |
Finding the surface area of a rectangular based pyramid
|
Models of a Rectangular based pyramid
Models of a cone |
KLB BK 2 Pg 179-180
|
|
4 | 1 |
Trigonometry
|
Surface area of a frustrum of a cone and a pyramid
Finding the surface area of a sphere |
By the end of the
lesson, the learner
should be able to:
Find the surface area of a frustrum of a cone and pyramid |
Finding the surface area of a frustrum of a cone and a pyramid
|
Models of frustrum of a cone and a pyramid
Models of a sphere Charts illustrating formula for finding the surface area of a sphere |
KLB BK 2 Pg 182
|
|
4 | 2 |
Trigonometry
|
Surface area of a Hemispheres
Volume of Solids Volume of prism (triangular based prism) |
By the end of the
lesson, the learner
should be able to:
Find the surface area of a hemisphere |
Finding the surface area of a hemisphere
|
Models of a hemisphere
Models of a triangular based prism |
KLB BK 2 Pg 184
|
|
4 | 3 |
Trigonometry
|
Volume of prism (hexagonal based prism) given the sides and angle
Volume of a pyramid (square based and rectangular based) |
By the end of the
lesson, the learner
should be able to:
Find the volume of a hexagonal based prism |
Calculating the volume of an hexagonal prism
|
Models of hexagonal based prism
Models of square and Rectangular based Pyramids |
KLB BK 2 Pg 187
|
|
4 | 4 |
Trigonometry
|
Volume of a cone
|
By the end of the
lesson, the learner
should be able to:
Find the volume of a cone |
Finding the volume of a cone
|
Model of a cone
|
KLB BK 2 Pg 191
|
|
4 | 5 |
Trigonometry
|
Volume of a frustrum of a cone
Volume of a frustrum of a pyramid |
By the end of the
lesson, the learner
should be able to:
Find the volume of a frustrum of a cone |
Finding the volume of a full cone before its cutoff Finding the volume of a cut cone then subtracting
|
Models of a frustrum of a cone
Models of frustrum of a pyramid |
KLB BK 2 Pg 192
|
|
4 | 6 |
Trigonometry
|
Volume of a sphere (v = 4/3?r3)
Volume of a Hemisphere {(v = ? (4/3?r3)} |
By the end of the
lesson, the learner
should be able to:
Find the volume of sphere given the radius of the sphere |
Finding the volume of a Sphere
|
Model of a sphere Mathematical table
Models of hemisphere |
KLB BK 2 Pg 195
|
|
5 | 1 |
Trigonometry
Trigonometric Ratios |
Application of area of triangles to real life
Tangent of an angle |
By the end of the
lesson, the learner
should be able to:
Use the knowledge of the area of triangles in solving problems in real life situation |
Solving problems in real life using the knowledge of the area of triangle
|
Mathematical table Chart illustrating formula used
Protractor Ruler Right corners Mathematical tables |
KLB BK 2 Pg 159
|
|
5 | 2 |
Trigonometric Ratios
|
Tangent of an angle
Using tangents in calculations |
By the end of the
lesson, the learner
should be able to:
find the tangent of an angle from tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
5 | 3 |
Trigonometric Ratios
|
Application of tangents
The sine of an angle |
By the end of the
lesson, the learner
should be able to:
work out further problems using tangents |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
5 | 4 |
Trigonometric Ratios
|
The cosine of an angle
|
By the end of the
lesson, the learner
should be able to:
find the cosine of an angle by calculations and through tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
5 | 5 |
Trigonometric Ratios
|
Application of sine and cosine
Complementary angles |
By the end of the
lesson, the learner
should be able to:
apply sines to work out lengths and angles. Apply cosine to work out length and angles |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
5 | 6 |
Trigonometric Ratios
|
Special angles
Application of Special angles |
By the end of the
lesson, the learner
should be able to:
find the sine, cos, and tan of 300,600,450,00,900, without using tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
6 | 1 |
Trigonometric Ratios
|
Logarithms of sines, cosines and tangents
Relationship between sin, cos and tan |
By the end of the
lesson, the learner
should be able to:
solve problems using logarithms of sines cosines and tangents |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
6 | 2 |
Trigonometric Ratios
|
Application to real life situation
Problem solving |
By the end of the
lesson, the learner
should be able to:
apply the knowledge of trigonometry to real life situations |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
6 | 3 |
Area of A Triangle
|
Area =
Solve problems involving = |
By the end of the
lesson, the learner
should be able to:
derive the formula Area = |
Discussions
Drawing triangles Measuring lengths/angles Calculating area |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 155-157
|
|
6 | 4 |
Area of A Triangle
|
A =?s(s-a) (s-b) (s-c)
Problem solving |
By the end of the
lesson, the learner
should be able to:
find the area of a triangle given the three sides |
Discussions
Drawing triangles Measuring lengths/angles Calculating area |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 155-157
|
|
6 | 5 |
Area of Quadrilaterals
|
Area of parallelogram
|
By the end of the
lesson, the learner
should be able to:
find the area of quadrilaterals like trapeziums, parallelogram etc. by dividing the shape of triangles |
Drawing trapeziums/polygons
Measuring lengths/angles Reading mathematical tables Discussions |
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables |
KLB Maths Bk2 Pg. 160
|
|
6 | 6 |
Area of Quadrilaterals
|
Area of Rhombus
Area of trapezium and kite |
By the end of the
lesson, the learner
should be able to:
find the area of a regular polygon. |
Drawing trapeziums/polygons
Measuring lengths/angles Reading mathematical tables Discussions |
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables |
KLB Maths Bk2 Pg. 161
|
|
7 | 1 |
Area of Quadrilaterals
|
Area of regular polygons
Problem solving |
By the end of the
lesson, the learner
should be able to:
find the area of a regular polygon by using the formula A= |
Drawing trapeziums/polygons
Measuring lengths/angles Reading mathematical tables Discussions |
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables Chalkboard illustrations Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
7 | 2 |
Area of Part of a Circle
|
Area of a sector
Area of a segment |
By the end of the
lesson, the learner
should be able to:
find area of a sector |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a sector Chart illustrating the area of a minor segment |
KLB Maths Bk2 Pg. 167-169
|
|
7 | 3 |
Area of Part of a Circle
|
Common region between two circles
Common region between two circles |
By the end of the
lesson, the learner
should be able to:
find the area of the common region between two circles. |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a minor segment |
KLB Maths Bk2 Pg. 167-169
|
|
7 | 4 |
Area of Part of a Circle
Surface Area of Solids |
Problem solving
Surface area of prisms |
By the end of the
lesson, the learner
should be able to:
solve problems involving the area of part of a circle |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a minor segment Chalkboard illustrations Prism Chalkboard illustrations |
KLB Maths Bk2 Pg. 167-169
|
|
7 | 5 |
Surface Area of Solids
|
Surface area of pyramid
Surface area of a cone |
By the end of the
lesson, the learner
should be able to:
find the surface area of a pyramid |
Drawing pyramids
Measuring lengths/ angles Opening pyramids to form nets Discussions Calculating area |
Pyramids with square base, rectangular base, triangular base
Cone |
KLB Maths Bk2 Pg. 178
|
|
7 | 6 |
Surface Area of Solids
|
Surface area of frustrum with circular base
|
By the end of the
lesson, the learner
should be able to:
find the surface area of frustrum with circular base |
Drawing cones/frustums
Making cones/frustums Measuring lengths/ angles Discussions |
Chart illustrating the surface area of a frustrum
|
KLB Maths Bk2 Pg. 181-283
KLBMathematics Bk2 Discovering Secondary Mathematics Bk2 |
|
8 | 1 |
Surface Area of Solids
|
Surface area of frustrum with square base
Surface area of frustrum with rectangular base |
By the end of the
lesson, the learner
should be able to:
find the surface area of frustrum with square base |
Drawing cones/frustums
Making cones/frustums Measuring lengths/ angles Discussions Learners find the surface area |
Chart illustrating frustrum with a square base
Chart illustrating frustrum with a rectangular base |
KLB Maths Bk2 Pg. 181-183
|
|
8 | 2 |
Surface Area of Solids
|
Surface area of spheres
Problem solving |
By the end of the
lesson, the learner
should be able to:
find the surface area of a sphere |
Sketching spheres
Making spheres Measuring diameters/ radii of spheres Discussions |
Chalkboard illustrations
Past paper questions |
KLB Maths Bk2 Pg. 183
|
|
8 | 3 |
Volume of Solids
|
Volume of prism
Volume of pyramid |
By the end of the
lesson, the learner
should be able to:
find the volume of a prism |
Identifying prisms
Identifying the cross-sectional area Drawing/sketching prisms |
Prism
Pyramid |
KLB Maths Bk2 Pg. 186-188
|
|
8 | 4 |
Volume of Solids
|
Volume of a cone
Volume of a sphere |
By the end of the
lesson, the learner
should be able to:
find the volume of a cone |
Making cones/frustums
Opening cones/frustums to form nets |
Cone
Sphere |
KLB Maths Bk2 Pg. 191
|
|
8 | 5 |
Volume of Solids
|
Volume of frustrum
Volume of frustrum with a square base |
By the end of the
lesson, the learner
should be able to:
find the volume of a frustrum with a circular base |
Making cones/frustums
Opening cones/frustums to form nets |
Frustrum with circular base
Frustrum with square base |
KLB Maths Bk2 Pg. 192-193
|
|
8 | 6 |
Volume of Solids
|
Volume of frustrum with a rectangular base
|
By the end of the
lesson, the learner
should be able to:
find the volume of a frustrum with a rectangular base |
Making cones/frustums
Opening cones/frustums to form nets |
Frustrum with rectangular base
|
KLB Maths Bk2 Pg. 192-193
|
|
9 |
Midterm break and assessment |
|||||||
10 | 1 |
Volume of Solids
|
Application to real life situation
Problem solving |
By the end of the
lesson, the learner
should be able to:
apply the knowledge of volume of solids to real life situations. |
Making cones/frustums
Opening cones/frustums to form nets |
Models of pyramids, prism, cones and spheres
Past paper questions |
KLB Maths Bk2 Pg. 193-194
|
|
10 | 2 |
Quadratic Expressions and Equations
|
Expansion of Algebraic Expressions
Quadratic identities |
By the end of the
lesson, the learner
should be able to:
expand algebraic expressions |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 203
|
|
10 | 3 |
Quadratic Expressions and Equations
|
Application of identities
Factorise the Identities |
By the end of the
lesson, the learner
should be able to:
identify and use the three Algebraic identities |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 204-205
|
|
10 | 4 |
Quadratic Expressions and Equations
|
Factorise other quadratic expressions
Factorisation of expressions of the form k2-9y2 |
By the end of the
lesson, the learner
should be able to:
factorise quadratic expressions |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Chart illustrating factorization of a quadratic expression
Real-life experiences Worked out expressions |
KLB Maths Bk2 Pg. 119-122
|
|
10 | 5 |
Quadratic Expressions and Equations
|
Simplification of an expression by factorisation
Solving quadratic equations |
By the end of the
lesson, the learner
should be able to:
simplify a quadratic expression by factorisation |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 205-208
|
|
10 | 6 |
Quadratic Expressions and Equations
|
The formation of quadratic equations
Formation and solving of quadratic equations from word problems |
By the end of the
lesson, the learner
should be able to:
form quadratic equations from information |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 208
|
|
11 | 1 |
Quadratic Expressions and Equations
|
Solving on quadratic equations
|
By the end of the
lesson, the learner
should be able to:
solve problems on quadratic equations |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 208-210
|
|
11 | 2 |
Quadratic Expressions and Equations
Linear Inequalities |
Forming quadratic equations from the roots
Inequalities symbols |
By the end of the
lesson, the learner
should be able to:
form quadratic equations given the roots of the equation |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions Number lines Graph papers Square boards Negative and positive numbers |
KLB Maths Bk2 Pg. 210
|
|
11 | 3 |
Linear Inequalities
|
Number line
Inequalities in one unknown |
By the end of the
lesson, the learner
should be able to:
illustrate inequalities on a number line |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers |
KLB Maths Bk2 Pg. 213-224
|
|
11 | 4 |
Linear Inequalities
|
Graphical representation
Graphical solutions of simultaneous linear inequalities |
By the end of the
lesson, the learner
should be able to:
represent linear inequalities in one unknown graphically |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines Graph papers
Square boards Negative and positive numbers Number lines Graph papers |
KLB Maths Bk2 Pg. 213-224
|
|
11 | 5 |
Linear Inequalities
|
Graphical solutions of simultaneous linear inequalities
Area of the wanted region |
By the end of the
lesson, the learner
should be able to:
solve simultaneous linear inequalities graphically |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers |
KLB Maths Bk2 Pg. 213-224
|
|
11 | 6 |
Linear Inequalities
|
Inequalities from inequality graphs
Problem solving. |
By the end of the
lesson, the learner
should be able to:
form simple linear inequalities from inequality graphs |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers |
KLB Maths Bk2 Pg. 213-224
|
|
12 | 1 |
Linear Motion
|
Displacement, velocity, speed and acceleration
|
By the end of the
lesson, the learner
should be able to:
Define displacement, speed velocity and acceleration |
Teacher/pupil discussion
Plotting graphs Drawing graphs |
Graph papers
Stones Pieces of paper |
KLB Maths Bk2 Pg. 228-238
|
|
12 | 2 |
Linear Motion
|
Distinguishing terms
Distinguishing velocity and acceleration |
By the end of the
lesson, the learner
should be able to:
distinguish between distance and displacement, speed and velocity |
Plotting graphs
Drawing graphs |
Graph papers
Stones Pieces of paper |
KLB Maths Bk2 Pg. 228-238
|
|
12 | 3 |
Linear Motion
|
Distance time graphs
Interpret the velocity time graph |
By the end of the
lesson, the learner
should be able to:
plot and draw the distance time graphs |
Plotting graphs
Drawing graphs |
Graph papers
Stones Pieces of paper Drawn graphs |
KLB Maths Bk2 Pg. 228-238
|
|
12 | 4 |
Linear Motion
|
Interpreting graphs
Relative speed (objects moving in the same direction) |
By the end of the
lesson, the learner
should be able to:
interpret graphs of linear motion |
Learners interpret graphs
|
Drawn graphs
Real life situation Chalkboard illustrations |
KLB
Maths Bk2 Pg.334 |
|
12 | 5 |
Linear Motion
Statistics |
Problem solving
Definition |
By the end of the
lesson, the learner
should be able to:
solve problems on linear motion |
Question answer method
|
Past paper questions
Weighing balance Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB
Maths Bk2 Pg.330 |
|
12 | 6 |
Statistics
|
Collection and organization of data
Frequency tables |
By the end of the
lesson, the learner
should be able to:
collect and organize data |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
13 | 1 |
Statistics
|
Grouped data
Mean of ungrouped data |
By the end of the
lesson, the learner
should be able to:
group data into reasonable classes |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
13 | 2 |
Statistics
|
Median of ungrouped data
|
By the end of the
lesson, the learner
should be able to:
calculate the median of ungrouped data and state the mode |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
Your Name Comes Here