If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 | 3 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Atomic and mass numbers.
First twenty elements of the periodic table. |
By the end of the
lesson, the learner
should be able to:
Name the subatomic particles in an atom. Define atomic number and mass number of an atom. Represent atomic and mass numbers symbolically. |
Exposition on new concepts;
Probing questions; Brief discussion. |
text book
Periodic table. |
K.L.B.
BOOK II PP. 1-3 |
|
4 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Isotopes.
|
By the end of the
lesson, the learner
should be able to:
Define isotopes. Give examples of isotopes. |
Exposition of definition and examples of isotopes.
Giving examples of isotopes. |
Periodic table.
|
K.L.B.
BOOK II P. 4 PP. 5-8 |
||
2 | 1 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Electronic configuration.
|
By the end of the
lesson, the learner
should be able to:
Represent isotopes symbolically. Define an energy level. Describe electronic configuration in an atom. |
Exposition ? teacher exposes new concepts about electronic configuration.
Written exercise. |
Periodic table.
|
K.L.B.
BOOK II P. 4 PP. 5-9 |
|
2-3 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Electronic configuration in diagrams.
Periods of the periodic table. Groups of the periodic table. |
By the end of the
lesson, the learner
should be able to:
Represent electronic configuration diagrammatically. Identify elements of the same period. |
Supervised practice;
Written exercise. Exposition ? definition of a group. Q/A: examples of elements of the same group. |
text book
Periodic table. |
K.L.B.
BOOK II PP. 5-8 K.L.B. BOOK IIP. 9 |
||
4 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
R.M.M. and isotopes.
Positive ions and ion formation. |
By the end of the
lesson, the learner
should be able to:
Calculate R.M.M. from isotopic composition. |
Supervised practice involving calculation of RMM from isotopic composition.
|
text book
|
K.L.B. BOOK IIPP. 11-13
|
||
3 | 1 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Positive ions representation.
|
By the end of the
lesson, the learner
should be able to:
To represent formation of positive ions symbolically. |
Diagrammatic representation of cations.
|
Chart ion model.
|
K.L.B. BOOK IIP 16
|
|
2-3 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Negative ions and ion formation.
Valencies of metals. Valencie of non-metals. |
By the end of the
lesson, the learner
should be able to:
To define an anion. To describe formation of negative ions symbolically. Recall valencies of metals among the first twenty elements in the periodic table. |
Teacher gives examples of stable atoms.
Guided discovery of formation of negative ions. Diagrammatic representation of anions. Q/A to review previous lesson; Exposition; Guided discovery. |
Chart ion model.
Periodic table. |
K.L.B. BOOK IIP 17
|
||
4 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Valencies of radicals.
|
By the end of the
lesson, the learner
should be able to:
Define a radical. Recall the valencies of common radicals. |
Exposition ? teacher defines a radical, gives examples of radicals and exposes their valencies.
Students draw a table of radicals and their valencies. |
text book
|
K.L.B. BOOK IIP 18
|
||
4 | 1 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Oxidation number.
Electronic configuration, ion formed, valency and oxidation number |
By the end of the
lesson, the learner
should be able to:
Define oxidation number. Predict oxidation numbers from position of elements in the periodic table. |
Q/A: Valencies.
Expose oxidation numbers of common ions. Students complete a table of ions and their oxidation numbers. |
The periodic table.
text book |
K.L.B. BOOK IIvP 18
|
|
2-3 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Chemical formulae of compounds.
- Elements of equal valencies.
Chemical formulae of compounds. -Elements of unequal valencies. |
By the end of the
lesson, the learner
should be able to:
To derive the formulae of some compounds involving elements of equal valencies. To derive the formulae of some compounds involving elements of unequal valencies. |
Discuss formation of compounds such as NaCl, MgO.
Discuss formation of compounds such as MgCl2 Al (NO3)3 |
text book
|
K.L.B. BOOK IIPP 19-20
|
||
4 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Chemical formulae of compounds.
-Elements of variable valencies.
Chemical equations. |
By the end of the
lesson, the learner
should be able to:
To derive the formulae of some compounds involving elements of variable valencies. |
Discuss formation of compounds such as
-Copper (I) Oxide. -Copper (II) Oxide. -Iron (II) Sulphate. -Iron (III) Sulphate. |
text book
|
K.L.B. BOOK IIP 20
|
||
5 | 1 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Balanced chemical equations.
|
By the end of the
lesson, the learner
should be able to:
To balance chemical equations correctly. |
Exposition;
Supervised practice. |
text book
|
K.L.B. BOOK IIPP 24-25
|
|
2-3 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
CHEMICAL FAMILIES |
Balanced chemical equations.(contd)
Alkali metals. Atomic and ionic radii of alkali metals Ionisation energy of alkali metals. |
By the end of the
lesson, the learner
should be able to:
To balance chemical equations correctly. Identify alkali metals. State changes in atomic and ionic radii of alkali metals. |
Supervised practice;
Written exercise. Q/A to reviews elements of group I and their electronic configuration. Examine a table of elements, their symbols and atomic & ionic radii. Discussion & making deductions from the table. |
text book
The periodic text book |
K.L.B. BOOK IIPP 25-8
K.L.B. BOOK IIPP 28-29 |
||
4 |
CHEMICAL FAMILIES
|
Physical properties of alkali metals.
|
By the end of the
lesson, the learner
should be able to:
State and explain trends in physical properties of alkali metals. |
Examine a table showing comparative physical properties of Li, Na, and K.
Q/A: Teacher asks probing questions as students refer to the table for answers. Detailed discussion on physical properties of alkali metals. |
Chart ? comparative properties of Li, Na, K.
|
K.L.B. BOOK IIPP 30-31
|
||
6 | 1 |
CHEMICAL FAMILIES
|
Chemical properties of alkali metals.
Reaction of alkali metals with chlorine gas. |
By the end of the
lesson, the learner
should be able to:
To describe reaction of alkali metals with water. |
Q/A: Review reaction of metals with water.
Writing down chemical equations for the reactions. Deduce and discuss the order of reactivity down the group. |
text book
Sodium, chlorine. |
K.L.B. BOOK IIP. 32
|
|
2-3 |
CHEMICAL FAMILIES
|
Compounds of alkali metals.
Uses of alkali metals. |
By the end of the
lesson, the learner
should be able to:
Write chemical formulae for compounds of alkali metals. Explain formation of hydroxides, oxides and chlorides of alkali metals. State uses of alkali metals. |
Exercise: Completing a table of hydroxides, oxides and chlorides of alkali metals.
Discuss combination of ions of alkali metals with anions. Descriptive approach: Teacher elucidates uses of alkali metals. |
text book
|
K.L.B. BOOK II pp 33
K.L.B. BOOK II pp 34 |
||
4 |
CHEMICAL FAMILIES
|
Alkaline Earth metals
Atomic and ionic radii of alkaline earth metals.
Physical properties of alkaline earth metals. |
By the end of the
lesson, the learner
should be able to:
Identify alkaline earth metals. State changes in atomic and ionic radii of alkaline earth metals. |
Q/A: Elements of group I and their electron configuration.
Examine a table of elements, their symbols and atomic & ionic radii. Make deductions from the table. |
Some alkaline earth metals.
|
K.L.B. BOOK II pp 34
|
||
7 | 1 |
CHEMICAL FAMILIES
|
Electrical properties of alkaline earth metals.
|
By the end of the
lesson, the learner
should be able to:
To describe electrical properties of alkaline earth metals. |
Teacher demonstration: -
To show alkaline metals are good conductors of electric charge. |
Alkaline earth metals.
|
K.L.B. BOOK IIP. 37
|
|
2-3 |
CHEMICAL FAMILIES
|
Chemical properties of alkaline earth metals.
Reaction of alkaline earth metals with oxygen.
Chemical properties of alkaline earth metals. Reaction of alkaline earth metals with water. Reaction of alkaline earth metals with chlorine gas. |
By the end of the
lesson, the learner
should be able to:
To describe reaction of alkaline earth metals with oxygen To write balanced equations for reaction of alkaline earth metals with chlorine gas. |
Q/A: Review reactions of Mg, Ca, with oxygen.
The corresponding word and then chemical equations are then written and their correctness verified by the teacher. Teacher demonstration- Reaction of sodium with chlorine in a fume chamber. Q/A: Students to predict a similar reaction between potassium and chlorine. Word and balanced chemical equations for various reactions. Supervised practice. |
text book
Some alkaline earth metals. Sodium, chlorine. |
K.L.B. BOOK IIP. 38
K.L.B. BOOK II P. 41 |
||
4 |
CHEMICAL FAMILIES
|
Reaction of alkaline earth metals with dilute acids.
|
By the end of the
lesson, the learner
should be able to:
To write balanced equations for reactions of alkaline earth metals with dilute acids. |
Changing word to chemical equations.
Supervised practice. |
revision book
|
K.L.B. BOOK II PP. 43
|
||
8 | 1 |
CHEMICAL FAMILIES
|
Chemical formulae of alkaline earth metals.
Uses of some alkaline earth metals and their compounds. |
By the end of the
lesson, the learner
should be able to:
Write chemical formulae for compounds of alkaline earth metals. Explain formation of hydroxides, oxides and chlorides of alkaline earth metals. |
Exercise: Completing a table of hydroxides, oxides and chlorides of alkaline earth metals.
Discuss combination of ions of alkaline earth metals with anions. |
text book
|
K.L.B. BOOK II PP. 45-47
|
|
8-9 |
Midterm exam |
|||||||
9 |
Midterm break |
|||||||
10 | 1 |
CHEMICAL FAMILIES
|
Halogens.
Physical properties of halogens.
Comparative physical properties of halogens. Chemical properties of halogens. |
By the end of the
lesson, the learner
should be able to:
Identify halogens in the periodic table. Give examples of halogens. Identify physical states of halogens. |
Teacher demonstration: - To examine electrical properties of iodine, solubility in water of chlorine.
|
Iodine crystals, electrical wire, a bulb.
text book Chlorine, iron wool, bromine. |
KLB BK II
P. 47 |
|
2-3 |
CHEMICAL FAMILIES
|
Equations of reaction of halogens with metals.
Reaction of halogens with water. Some uses of halogens and their compounds. |
By the end of the
lesson, the learner
should be able to:
To write balanced chemical equations of reactions involving halogens. To describe reaction of halogens with water and the results obtained. |
Re-write word equations as chemical equations then balance them.
Supervised practice. Bubbling chlorine gas through water. Carry out litmus test for the water. Explain the observations. |
text book
Chlorine gas, litmus papers. text book |
K.L.B. BOOK II P. 50
K.L.B. BOOK II P. 51 |
||
4 |
CHEMICAL FAMILIES
STRUCTURE & BONDING STRUCTURE & BONDING |
Noble Gases.
Comparative physical properties of noble gases.
Uses of noble gases. Chemical bonds. Ionic bond. Ionic bond representation. |
By the end of the
lesson, the learner
should be able to:
To describe physical properties of noble gases. To explain physical properties of noble gases. |
Make A comparative analysis of tabulated physical properties of noble gases.
|
text book
Chart- dot and cross diagrams. Models for bonding. |
K.L.B. BOOK IIPP. 52-53
|
||
11 | 1 |
STRUCTURE & BONDING
|
Grant ionic structures.
Physical properties of ionic compounds. Covalent bond. |
By the end of the
lesson, the learner
should be able to:
Describe the crystalline ionic compound. Give examples of ionic substances. |
Discuss the group ionic structures of NaCl.
Teacher gives examples of other ionic substances: KNO3, potassium bromide, Ca (NO3)2, sodium iodide. |
Giant sodium chloride model.
text book |
K.L.B. BOOK II PP 56-58
|
|
2-3 |
STRUCTURE & BONDING
|
Co-ordinate bond.
Molecular structure. Trend in physical properties of molecular structures. Giant atomic structure in diamond. Giant atomic structure in graphite. Metallic bond. Uses of some metals. |
By the end of the
lesson, the learner
should be able to:
To describe the co-ordinate bond To represent co-ordinate bond diagrammatically. To describe giant atomic structure in diamond. To state uses of diamond. |
Exposition- teacher explains the nature of co-ordinate bond.
Students represent co-ordinate bond diagrammatically. Diagrammatic representation of diamond. Discuss uses of diamond. |
text book
Sugar, naphthalene, iodine rhombic sulphur. Diagrams in textbooks. text book |
K.L.B. BOOK II P 65
K.L.B. BOOK II P 69 |
||
4 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
|
Physical properties of elements in periods.
Physical properties of elements in period 3. |
By the end of the
lesson, the learner
should be able to:
To compare electrical conductivity of elements in period 3 |
Group experiments- Construct electrical circuits incorporating a magnesium ribbon, then aluminum foil, then sulphur in turns.
The brightness of the bulb is noted in each case. Discuss the observations in terms of delocalised electrons. |
The periodic table.
|
K.L.B. BOOK IIP. 76
|
||
12 | 1 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
|
Chemical properties of elements in period 3.
Chemical properties of elements in the third period. Oxides of period 3 elements. Chlorides of period 3 elements. |
By the end of the
lesson, the learner
should be able to:
To compare reactions of elements in period 3 with oxygen. |
Q/A: Products of reactions of Na, Mg, Al, P, & S with oxygen.
Discuss the trend in their reactivity; identify basic and acidic oxides. Exercise ? balanced chemical equations for the above reactions. |
The periodic table.
|
K.L.B. BOOK II PP. 79-80
|
|
2-3 |
SALTS
|
Types of salts.
Solubility of salts in water. Solubility of bases in water. Methods of preparing various salts. |
By the end of the
lesson, the learner
should be able to:
Define a salt. Describe various types of salts and give several examples in each case. To test solubility of various bases in water. To carry out litmus test on the resulting solutions. |
Descriptive approach. Teacher exposes new concepts.
Class experiments- Dissolve salts in 5cc of water. Record the solubility in a table, Carry out litmus tests. Discuss the results. |
text book
Sulphates, chlorides, nitrates, carbonates of various metals. Oxides, hydroxides, of various metals, litmus papers. CuO, H2SO4, HCl, NaOH, PbCO3, dil HNO3. |
K.L.B. BOOK II P. 91
K.L.B. BOOK IIPP. 94-95 |
||
4 |
SALTS
|
Direct synthesis of a salts.
Ionic equations. |
By the end of the
lesson, the learner
should be able to:
To describe direct synthesis of a salt. To write balanced equations for the reactions. |
Group experiments- preparation of iron (II) sulphide by direct synthesis.
Give other examples of salts prepared by direct synthesis. Students write down corresponding balanced equations. |
Iron,
Sulphur PbNO3, MgSO4 solutions. |
K.L.B. BOOK II P. 104
|
||
13 | 1 |
SALTS
|
Effects of heat on carbonates.
Effects of heat on nitrates. Effects of heat on sulphates. |
By the end of the
lesson, the learner
should be able to:
To state effects of heat on carbonates. To predict products resulting from heating metal carbonates. |
Group experiments- To investigate effects of heat on Na2CO3, K2CO3, CaCO3, ZnCO3, PbCO3, e.t.c.
Observe various colour changes before, during and after heating. Write equations for the reactions. |
Various carbonates.
Common metal nitrates. Common sulphates. |
K.L.B. BOOK II PP. 108-109
|
|
2 |
SALTS
|
Hygroscopy, Deliquescence and Efflorescence.
Uses of salts. |
By the end of the
lesson, the learner
should be able to:
To define hygroscopic deliquescent and efflorescent salts. To give examples of hygroscopic deliquescent and efflorescent salts. |
Prepare a sample of various salts.
Expose them to the atmosphere overnight. Students classify the salts as hygroscopic, deliquescent and / or efflorescent. |
|
K.L.B. BOOK II P. 114
|
||
13-14 |
End term exam |
Your Name Comes Here