If this scheme pleases you, click here to download.
WK | LSN | STRAND | SUB-STRAND | LESSON LEARNING OUTCOMES | LEARNING EXPERIENCES | KEY INQUIRY QUESTIONS | LEARNING RESOURCES | ASSESSMENT METHODS | REFLECTION |
---|---|---|---|---|---|---|---|---|---|
1 | 1-2 |
Living Things and their Environment
|
Nutrition in plants - Leaf tissues for photosynthesis
Nutrition in plants - Internal adaptations for photosynthesis Nutrition in plants - Structure of chloroplast |
By the end of the
lesson, the learner
should be able to:
- Explain the functions of internal leaf tissues - Relate internal leaf structures to photosynthesis - Appreciate the complexity of leaf tissues - Describe how internal leaf structures are adapted for photosynthesis - Relate specific adaptations to photosynthetic functions - Show interest in plant adaptations |
- Discuss the functions of different internal leaf tissues
- Relate the structure of internal leaf tissues to photosynthesis - Share findings with classmates - Discuss how internal leaf structures are adapted for photosynthesis - Search for information about internal leaf adaptations - Make summary notes on internal leaf adaptations |
What is the importance of photosynthesis in nature?
|
- Mentor Integrated Science (pg. 53)
- Charts showing internal leaf tissues - Digital resources - Models - Mentor Integrated Science (pg. 54) - Digital resources - Charts showing internal leaf adaptations - Reference materials - Mentor Integrated Science (pg. 55) - Charts showing structure of chloroplast - Models |
- Observation
- Written assignments
- Oral presentations
|
|
1 | 3 |
Living Things and their Environment
|
Nutrition in plants - Chloroplast adaptations
Nutrition in plants - Process of photosynthesis Nutrition in plants - Conditions for photosynthesis |
By the end of the
lesson, the learner
should be able to:
- Explain how chloroplasts are adapted for photosynthesis - Identify chloroplast structures from photomicrographs - Show interest in microscopic structures |
- Study a photomicrograph of a chloroplast
- Identify parts of the chloroplast from the photomicrograph - Discuss how chloroplasts are adapted for photosynthesis |
What is the importance of photosynthesis in nature?
|
- Mentor Integrated Science (pg. 56)
- Photomicrographs of chloroplasts - Charts showing chloroplast structure - Digital resources - Mentor Integrated Science (pg. 57) - Charts showing photosynthesis process - Reference materials - Mentor Integrated Science (pg. 58) - Charts showing conditions for photosynthesis |
- Observation
- Written assignments
- Oral presentations
|
|
1 | 4 |
Living Things and their Environment
|
Nutrition in plants - Stages of photosynthesis
Nutrition in plants - Testing for starch Nutrition in plants - Light and photosynthesis |
By the end of the
lesson, the learner
should be able to:
- Describe the light and dark stages of photosynthesis - Explain where each stage occurs in the chloroplast - Show curiosity in understanding photosynthetic stages |
- Study a chart showing stages of photosynthesis
- Discuss the light and dark stages of photosynthesis - Explain the products of each stage of photosynthesis |
What is the importance of photosynthesis in nature?
|
- Mentor Integrated Science (pg. 59)
- Charts showing stages of photosynthesis - Digital resources - Reference materials - Mentor Integrated Science (pg. 60) - Apparatus for testing starch in leaves - Chemicals (iodine solution) - Fresh leaves - Heat source - Mentor Integrated Science (pg. 61) - Potted plants - Aluminum foil/carbon paper - Apparatus for testing starch - Chemicals |
- Observation
- Written assignments
- Oral questions
|
|
1 | 5 |
Living Things and their Environment
|
Nutrition in plants - Carbon (IV) oxide and photosynthesis
Nutrition in plants - Chlorophyll and photosynthesis |
By the end of the
lesson, the learner
should be able to:
- Investigate whether carbon (IV) oxide is necessary for photosynthesis - Control variables in an experiment - Practice safety measures when conducting experiments |
- Design an experiment to investigate the effect of carbon (IV) oxide on photosynthesis
- Set up the experiment with appropriate controls - Record and analyze results - Draw conclusions from the experiment |
What is the importance of photosynthesis in nature?
|
- Mentor Integrated Science (pg. 62)
- Potted plants - Conical flasks with corks - Potassium hydroxide solution - Apparatus for testing starch - Mentor Integrated Science (pg. 63) - Variegated leaves - Chemicals - Heat source |
- Observation
- Practical work
- Written reports
|
|
2 | 1-2 |
Living Things and their Environment
|
Nutrition in plants - Importance of photosynthesis
Nutrition in plants - Environmental impact of photosynthesis Nutrition in animals - Modes of nutrition in animals Nutrition in animals - Parasitic mode of nutrition Nutrition in animals - Saprophytic mode of nutrition |
By the end of the
lesson, the learner
should be able to:
- Explain the importance of photosynthesis in nature - Relate photosynthesis to food production and oxygen release - Appreciate the significance of photosynthesis - Explain parasitic mode of nutrition - Identify animals that exhibit parasitic mode of nutrition - Appreciate the role of parasites in the ecosystem |
- Search for information on importance of photosynthesis
- Discuss how photosynthesis benefits plants, animals and the environment - Make summary notes on importance of photosynthesis - Observe pictures of parasitic animals - Discuss the characteristics of parasitic animals - Research on examples of parasitic animals - Create presentations on parasitic animals |
What is the importance of photosynthesis in nature?
How do different animals feed? |
- Mentor Integrated Science (pg. 64)
- Digital resources - Charts showing importance of photosynthesis - Reference materials - Mentor Integrated Science (pg. 65) - Charts showing carbon cycle - Mentor Integrated Science Grade 9 (pg. 73) - Digital devices - Pictures of animals with different feeding habits - Mentor Integrated Science Grade 9 (pg. 74) - Digital devices - Pictures of parasitic animals - Pictures/videos of saprophytic organisms |
- Observation
- Written assignments
- Oral presentations
- Observation - Oral questions - Written assignments - Group presentations |
|
2 | 3 |
Living Things and their Environment
|
Nutrition in animals - Symbiotic mode of nutrition
Nutrition in animals - Holozoic mode of nutrition Nutrition in animals - Types of teeth (structure) |
By the end of the
lesson, the learner
should be able to:
- Explain symbiotic mode of nutrition - Identify organisms that exhibit symbiotic relationships in feeding - Appreciate the interdependence of organisms in nutrition |
- Observe pictures of symbiotic relationships
- Discuss examples of symbiotic relationships in feeding - Research on symbiotic relationships - Create presentations on symbiotic relationships |
How do different animals feed?
|
- Mentor Integrated Science Grade 9 (pg. 75)
- Digital devices - Pictures of symbiotic relationships - Pictures of animals with holozoic feeding - Mentor Integrated Science Grade 9 (pg. 76) - Dental models or charts |
- Observation
- Oral questions
- Written assignments
- Group presentations
|
|
2 | 4 |
Living Things and their Environment
|
Nutrition in animals - Types of teeth (functions)
Nutrition in animals - Dentition in animals (homodont and heterodont) |
By the end of the
lesson, the learner
should be able to:
- Describe the functions of different types of teeth - Relate the structure of teeth to their functions - Show interest in understanding tooth function |
- Discuss the functions of different types of teeth
- Using models, demonstrate how different teeth perform their functions - Make presentations on the relationship between structure and function of teeth |
How is food digested in the human body?
|
- Mentor Integrated Science Grade 9 (pg. 77)
- Dental models or charts - Digital devices - Mentor Integrated Science Grade 9 (pg. 78) - Pictures of animal teeth |
- Observation
- Oral questions
- Written assignments
- Presentations
|
|
2 | 5 |
Living Things and their Environment
|
Nutrition in animals - Dentition in carnivores
Nutrition in animals - Dentition in herbivores |
By the end of the
lesson, the learner
should be able to:
- Describe the dentition of carnivores - Identify adaptations of carnivore teeth to their feeding habits - Show interest in understanding carnivore dentition |
- Observe pictures/models of carnivore teeth
- Discuss the adaptations of carnivore teeth to their feeding habits - Research on examples of carnivores and their dentition - Make presentations on carnivore dentition |
How is food digested in the human body?
|
- Mentor Integrated Science Grade 9 (pg. 79)
- Pictures/models of carnivore teeth - Digital devices - Mentor Integrated Science Grade 9 (pg. 80) - Pictures/models of herbivore teeth |
- Observation
- Oral questions
- Written assignments
- Presentations
|
|
3 | 1-2 |
Living Things and their Environment
|
Nutrition in animals - Dentition in omnivores
Nutrition in animals - Process of digestion (ingestion) |
By the end of the
lesson, the learner
should be able to:
- Describe the dentition of omnivores - Identify adaptations of omnivore teeth to their feeding habits - Show interest in understanding omnivore dentition - Explain the process of ingestion in human beings - Describe the role of teeth and salivary glands in ingestion - Appreciate the complexity of the digestive process |
- Observe pictures/models of omnivore teeth
- Discuss the adaptations of omnivore teeth to their feeding habits - Research on examples of omnivores and their dentition - Make presentations on omnivore dentition - Discuss the process of ingestion - Using charts/models, identify structures involved in ingestion - Demonstrate the role of teeth and saliva in ingestion - Research on the process of ingestion |
How is food digested in the human body?
|
- Mentor Integrated Science Grade 9 (pg. 81)
- Pictures/models of omnivore teeth - Digital devices - Mentor Integrated Science Grade 9 (pg. 82) - Charts/models of the digestive system - Digital devices |
- Observation
- Oral questions
- Written assignments
- Presentations
- Observation - Oral questions - Written assignments - Demonstrations |
|
3 | 3 |
Living Things and their Environment
|
Nutrition in animals - Process of digestion (digestion)
Nutrition in animals - Process of digestion (absorption) |
By the end of the
lesson, the learner
should be able to:
- Explain the process of digestion in human beings - Identify organs involved in digestion and their functions - Appreciate the importance of proper digestion |
- Discuss the process of digestion in different parts of the digestive system
- Using charts/models, identify organs involved in digestion - Research on mechanical and chemical digestion - Present findings to the class |
How is food digested in the human body?
|
- Mentor Integrated Science Grade 9 (pg. 83)
- Charts/models of the digestive system - Digital devices |
- Observation
- Oral questions
- Written assignments
- Presentations
|
|
3 | 4 |
Living Things and their Environment
|
Nutrition in animals - Process of digestion (assimilation)
|
By the end of the
lesson, the learner
should be able to:
- Explain the process of assimilation in human beings - Describe how absorbed nutrients are utilized in the body - Value the importance of proper nutrition for body functions |
- Discuss the process of assimilation
- Research on how different nutrients are used in the body - Create presentations on the process of assimilation - Discuss the importance of proper nutrition |
How is food digested in the human body?
|
- Mentor Integrated Science Grade 9 (pg. 84)
- Charts of the circulatory system - Digital devices |
- Observation
- Oral questions
- Written assignments
- Presentations
|
|
3 | 5 |
Living Things and their Environment
|
Nutrition in animals - Process of digestion (egestion)
Reproduction in plants - Parts of a flower |
By the end of the
lesson, the learner
should be able to:
- Explain the process of egestion in human beings - Identify structures involved in egestion and their functions - Appreciate the importance of proper waste elimination |
- Discuss the process of egestion
- Using charts/models, identify structures involved in egestion - Research on the importance of fiber in egestion - Present findings to the class |
How is food digested in the human body?
|
- Mentor Integrated Science Grade 9 (pg. 84)
- Charts/models of the large intestine - Digital devices - Mentor Integrated Science Grade 9 (pg. 86) - Fresh flowers - Hand lens - Drawing materials |
- Observation
- Oral questions
- Written assignments
- Presentations
|
|
4 | 1-2 |
Living Things and their Environment
|
Reproduction in plants - Functions of parts of a flower
Reproduction in plants - Meaning of pollination Reproduction in plants - Types of pollination (self-pollination) Reproduction in plants - Types of pollination (cross-pollination) Reproduction in plants - Agents of pollination (insects) |
By the end of the
lesson, the learner
should be able to:
- Outline the functions of different parts of a flower - Relate the structure of flower parts to their functions - Show interest in understanding flower parts - Explain self-pollination - Identify plants that undergo self-pollination - Value the diversity in plant reproduction strategies |
- Discuss in groups the functions of different parts of a flower
- Use models/charts to explain how the structure of flower parts relates to their functions - Create presentations on flower parts and their functions - Discuss self-pollination - Use diagrams/charts to illustrate self-pollination - Research on examples of plants that undergo self-pollination - Create presentations on self-pollination |
How does reproduction in plants occur?
|
- Mentor Integrated Science Grade 9 (pg. 87)
- Flower models or charts - Digital devices - Mentor Integrated Science Grade 9 (pg. 88) - Videos on pollination - Charts showing pollination - Mentor Integrated Science Grade 9 (pg. 89) - Charts showing self-pollination - Digital devices - Charts showing cross-pollination - Mentor Integrated Science Grade 9 (pg. 90) - Pictures/videos of insect pollinators |
- Observation
- Oral questions
- Written assignments
- Group presentations
|
|
4 | 3 |
Living Things and their Environment
|
Reproduction in plants - Agents of pollination (birds, other animals)
Reproduction in plants - Agents of pollination (wind, water) Reproduction in plants - Adaptations of flowers to insect pollination |
By the end of the
lesson, the learner
should be able to:
- Identify birds and other animals as agents of pollination - Explain how birds and other animals aid in pollination - Value the diversity of pollination mechanisms |
- Observe pictures/videos of birds and other animals as pollinators
- Discuss how birds and other animals aid in pollination - Research on examples of flowers pollinated by birds and other animals - Present findings to class |
How does reproduction in plants occur?
|
- Mentor Integrated Science Grade 9 (pg. 90)
- Pictures/videos of bird and animal pollinators - Digital devices - Mentor Integrated Science Grade 9 (pg. 91) - Pictures/videos of wind and water pollination - Mentor Integrated Science Grade 9 (pg. 92) - Fresh insect-pollinated flowers - Pictures of insect-pollinated flowers - Hand lens |
- Observation
- Oral questions
- Written assignments
- Group presentations
|
|
4 | 4 |
Living Things and their Environment
|
Reproduction in plants - Adaptations of flowers to wind pollination
|
By the end of the
lesson, the learner
should be able to:
- Identify adaptations of flowers to wind pollination - Explain how these adaptations facilitate wind pollination - Value the diversity in plant adaptations |
- Observe wind-pollinated flowers
- Identify and discuss adaptations to wind pollination - Compare insect-pollinated and wind-pollinated flowers - Create presentations on adaptations to wind pollination |
How does reproduction in plants occur?
|
- Mentor Integrated Science Grade 9 (pg. 93)
- Fresh wind-pollinated flowers - Pictures of wind-pollinated flowers - Hand lens |
- Observation
- Oral questions
- Written assignments
- Group presentations
|
|
4 | 5 |
Living Things and their Environment
|
Reproduction in plants - Effects of agrochemicals on pollinating agents
|
By the end of the
lesson, the learner
should be able to:
- Explain the effects of agrochemicals on pollinating agents - Describe how these effects impact plant reproduction - Show concern for the impact of human activities on pollinators |
- Research on the effects of agrochemicals on pollinating agents
- Discuss how these effects impact plant reproduction - Debate on the use of agrochemicals and their effects on pollination - Present findings to class |
How does reproduction in plants occur?
|
- Mentor Integrated Science Grade 9 (pg. 94)
- Digital devices - Articles on effects of agrochemicals on pollinators |
- Observation
- Oral questions
- Written assignments
- Debate assessment
|
|
5 | 1-2 |
Living Things and their Environment
|
Reproduction in plants - Fertilization in flowering plants
Reproduction in plants - Seed formation in flowering plants Reproduction in plants - Fruit formation in flowering plants |
By the end of the
lesson, the learner
should be able to:
- Explain the process of fertilization in flowering plants - Describe the journey of pollen tube to the ovule - Appreciate the complexity of plant reproduction - Explain the process of seed formation in flowering plants - Identify the changes that occur during seed formation - Value the importance of seeds in plant reproduction |
- Watch videos on fertilization in flowering plants
- Use diagrams/charts to illustrate the fertilization process - Discuss the journey of the pollen tube to the ovule - Create presentations on fertilization in flowering plants - Watch videos on seed formation - Use diagrams/charts to illustrate seed formation - Observe different stages of seed development if available - Discuss the changes that occur during seed formation |
How does reproduction in plants occur?
|
- Mentor Integrated Science Grade 9 (pg. 95)
- Videos on fertilization in plants - Charts showing fertilization process - Digital devices - Mentor Integrated Science Grade 9 (pg. 96) - Videos on seed formation - Charts showing seed formation - Samples of seeds at different developmental stages - Mentor Integrated Science Grade 9 (pg. 97) - Videos on fruit formation - Charts showing fruit formation - Samples of fruits at different developmental stages |
- Observation
- Oral questions
- Written assignments
- Group presentations
- Observation - Oral questions - Written assignments - Drawing assessment |
|
5 | 3 |
Living Things and their Environment
|
Reproduction in plants - Fruit and seed dispersal (meaning and importance)
|
By the end of the
lesson, the learner
should be able to:
- Explain the meaning of fruit and seed dispersal - Describe the importance of fruit and seed dispersal - Value the role of dispersal in plant reproduction |
- Discuss the meaning of fruit and seed dispersal
- Research on the importance of fruit and seed dispersal - Debate on what would happen if seeds were not dispersed - Present findings to class |
How does reproduction in plants occur?
|
- Mentor Integrated Science Grade 9 (pg. 98)
- Digital devices - Charts showing seed dispersal |
- Observation
- Oral questions
- Written assignments
- Debate assessment
|
|
5 | 4 |
Living Things and their Environment
|
Reproduction in plants - Modes of fruit and seed dispersal (animals)
|
By the end of the
lesson, the learner
should be able to:
- Explain animal dispersal of fruits and seeds - Identify fruits and seeds dispersed by animals - Appreciate the role of animals in plant reproduction |
- Collect and observe fruits and seeds dispersed by animals
- Discuss the adaptations of these fruits and seeds for animal dispersal - Research on examples of animal-dispersed fruits and seeds - Create presentations on animal dispersal |
How does reproduction in plants occur?
|
- Mentor Integrated Science Grade 9 (pg. 99)
- Samples of animal-dispersed fruits and seeds - Digital devices - Pictures of animal dispersal |
- Observation
- Oral questions
- Written assignments
- Collection assessment
|
|
5 | 5 |
Living Things and their Environment
|
Reproduction in plants - Modes of fruit and seed dispersal (wind, water)
Reproduction in plants - Modes of fruit and seed dispersal (self-dispersal mechanisms) |
By the end of the
lesson, the learner
should be able to:
- Explain wind and water dispersal of fruits and seeds - Identify fruits and seeds dispersed by wind and water - Show interest in different dispersal mechanisms |
- Collect and observe fruits and seeds dispersed by wind and water
- Discuss the adaptations of these fruits and seeds for wind and water dispersal - Research on examples of wind and water dispersed fruits and seeds - Create presentations on wind and water dispersal |
How does reproduction in plants occur?
|
- Mentor Integrated Science Grade 9 (pg. 100)
- Samples of wind and water-dispersed fruits and seeds - Digital devices - Pictures of wind and water dispersal - Mentor Integrated Science Grade 9 (pg. 101) - Samples of self-dispersed fruits and seeds - Pictures of self-dispersal mechanisms |
- Observation
- Oral questions
- Written assignments
- Collection assessment
|
|
6 | 1-2 |
Living Things and their Environment
|
Reproduction in plants - Adaptations of fruits and seeds for dispersal
Reproduction in plants - Role of flowers in nature The interdependence of life - Components of the environment |
By the end of the
lesson, the learner
should be able to:
- Identify adaptations of fruits and seeds for different dispersal methods - Categorize fruits and seeds based on their dispersal methods - Value the relationship between structure and function - Explain the role of flowers in nature - Describe the ecological importance of flowers - Appreciate the value of flowers in the ecosystem |
- Collect and observe different fruits and seeds
- Identify adaptations for different dispersal methods - Categorize the fruits and seeds based on their dispersal methods - Create presentations on adaptations for dispersal - Discuss the role of flowers in nature - Research on the ecological importance of flowers - Debate on the value of flowers in the ecosystem - Create presentations on the role of flowers in nature |
How does reproduction in plants occur?
|
- Mentor Integrated Science Grade 9 (pg. 102)
- Various fruit and seed samples - Hand lens - Sorting trays - Mentor Integrated Science Grade 9 (pg. 105) - Digital devices - Pictures of different flowers and their roles - Charts on flower roles in ecosystems - Mentor Integrated Science Grade 9 (pg. 107) - School grounds - Notebooks |
- Observation
- Oral questions
- Classification activities
- Written assignments
- Observation - Oral questions - Written assignments - Group presentations |
|
6 | 3 |
Living Things and their Environment
|
The interdependence of life - Biotic factors (predation)
The interdependence of life - Biotic factors (parasitism) |
By the end of the
lesson, the learner
should be able to:
- Explain predation as a biotic interaction - Identify examples of predator-prey relationships - Show interest in predator-prey relationships |
- Discuss predation as a biotic interaction
- Observe pictures/videos of predator-prey relationships - Research on examples of predator-prey relationships - Present findings to class |
What is the role of living and non-living factors in environments?
|
- Mentor Integrated Science Grade 9 (pg. 108)
- Pictures/videos of predator-prey relationships - Digital devices - Mentor Integrated Science Grade 9 (pg. 109) - Pictures/videos of parasitic relationships |
- Observation
- Oral questions
- Written assignments
- Group presentations
|
|
6 | 4 |
Living Things and their Environment
|
The interdependence of life - Biotic factors (symbiosis)
The interdependence of life - Biotic factors (competition) The interdependence of life - Biotic factors (saprophytic) |
By the end of the
lesson, the learner
should be able to:
- Explain symbiosis as a biotic interaction - Identify examples of symbiotic relationships - Appreciate the importance of symbiotic relationships |
- Discuss symbiosis as a biotic interaction
- Observe pictures/videos of symbiotic relationships - Research on examples of symbiotic relationships - Create presentations on symbiotic relationships |
What is the role of living and non-living factors in environments?
|
- Mentor Integrated Science Grade 9 (pg. 110)
- Pictures/videos of symbiotic relationships - Digital devices - Mentor Integrated Science Grade 9 (pg. 111) - Pictures/videos of competitive relationships - Mentor Integrated Science Grade 9 (pg. 112) - Pictures/videos of saprophytic organisms |
- Observation
- Oral questions
- Written assignments
- Group presentations
|
|
6 | 5 |
Living Things and their Environment
|
The interdependence of life - Abiotic factors (temperature)
The interdependence of life - Abiotic factors (light) |
By the end of the
lesson, the learner
should be able to:
- Explain how temperature affects living organisms - Describe adaptations of organisms to different temperatures - Value the importance of temperature in ecosystems |
- Discuss how temperature affects living organisms
- Research on adaptations of organisms to different temperatures - Observe pictures/videos of organisms in different temperature zones - Present findings to class |
What is the role of living and non-living factors in environments?
|
- Mentor Integrated Science Grade 9 (pg. 113)
- Thermometers - Pictures/videos of organisms in different temperature zones - Digital devices - Mentor Integrated Science Grade 9 (pg. 114) - Light meters (if available) - Plants grown under different light conditions |
- Observation
- Oral questions
- Written assignments
- Group presentations
|
|
7 | 1-2 |
Living Things and their Environment
|
The interdependence of life - Abiotic factors (water)
The interdependence of life - Abiotic factors (wind) The interdependence of life - Abiotic factors (atmospheric pressure, pH and salinity) |
By the end of the
lesson, the learner
should be able to:
- Explain how water availability affects living organisms - Describe adaptations of organisms to different water conditions - Show interest in water conservation - Explain how atmospheric pressure, pH and salinity affect living organisms - Describe adaptations of organisms to these abiotic factors - Value adaptations to different environments |
- Discuss how water availability affects living organisms
- Research on adaptations of organisms to different water conditions - Compare plants from arid and wet environments - Present findings to class - Discuss how atmospheric pressure, pH and salinity affect living organisms - Research on adaptations of organisms to these factors - Test pH and salinity of different water samples if possible - Present findings to class |
What is the role of living and non-living factors in environments?
|
- Mentor Integrated Science Grade 9 (pg. 115)
- Pictures of plants from arid and wet environments - Water samples - Digital devices - Mentor Integrated Science Grade 9 (pg. 116) - Pictures of plants from windy and sheltered environments - Mentor Integrated Science Grade 9 (pg. 117) - pH testing equipment (if available) - Water samples of different salinity - Digital devices |
- Observation
- Oral questions
- Written assignments
- Group presentations
- Observation - Oral questions - Practical assessment - Written assignments |
|
7 | 3 |
Living Things and their Environment
|
The interdependence of life - Energy flow (food chains)
|
By the end of the
lesson, the learner
should be able to:
- Explain the concept of food chains - Construct simple food chains - Appreciate energy flow in ecosystems |
- Discuss the concept of food chains
- Identify producers and consumers in the environment - Construct simple food chains using organisms observed in the local environment - Present food chains to class |
What is the role of living and non-living factors in environments?
|
- Mentor Integrated Science Grade 9 (pg. 118)
- Charts showing food chains - Pictures of local organisms - Digital devices |
- Observation
- Oral questions
- Food chain construction assessment
- Written assignments
|
|
7 | 4 |
Living Things and their Environment
|
The interdependence of life - Energy flow (food webs)
The interdependence of life - Human activities (habitat change) |
By the end of the
lesson, the learner
should be able to:
- Explain the concept of food webs - Construct simple food webs - Value the complexity of feeding relationships in ecosystems |
- Discuss the concept of food webs
- Identify how food chains interconnect to form food webs - Construct simple food webs using organisms observed in the local environment - Present food webs to class |
What is the role of living and non-living factors in environments?
|
- Mentor Integrated Science Grade 9 (pg. 119)
- Charts showing food webs - Pictures of local organisms - Digital devices - Mentor Integrated Science Grade 9 (pg. 120) - Pictures showing habitat change - Newspaper articles |
- Observation
- Oral questions
- Food web construction assessment
- Written assignments
|
|
7 | 5 |
Living Things and their Environment
|
The interdependence of life - Human activities (hunting and poaching)
|
By the end of the
lesson, the learner
should be able to:
- Explain the effects of hunting and poaching on ecosystems - Describe conservation measures against hunting and poaching - Show concern for wildlife conservation |
- Discuss the effects of hunting and poaching on ecosystems
- Research on conservation measures against hunting and poaching - Debate on sustainable hunting practices - Present findings to class |
What is the role of living and non-living factors in environments?
|
- Mentor Integrated Science Grade 9 (pg. 121)
- Pictures related to hunting and poaching - Digital devices - Newspaper articles |
- Observation
- Oral questions
- Debate assessment
- Written assignments
|
|
8 | 1 |
Living Things and their Environment
|
The interdependence of life - Human activities (introduction of new living things)
|
By the end of the
lesson, the learner
should be able to:
- Explain the effects of introducing new species to ecosystems - Describe examples of invasive species and their impacts - Appreciate the importance of biodiversity conservation |
- Discuss the effects of introducing new species to ecosystems
- Research on examples of invasive species and their impacts - Debate on the management of invasive species - Present findings to class |
What is the role of living and non-living factors in environments?
|
- Mentor Integrated Science Grade 9 (pg. 122)
- Pictures of invasive species - Digital devices - Newspaper articles |
- Observation
- Oral questions
- Debate assessment
- Written assignments
|
|
8-9 |
MID TERM EXAMINATION |
||||||||
9 |
HALF TERM BREAK |
||||||||
10 | 1-2 |
Living Things and their Environment
Living Things and their Environment Force and Energy Force and Energy |
The interdependence of life - Interrelationships in Kenya national parks
The interdependence of life - Role of decomposers in ecosystems Curved mirrors - Types of curved mirrors Curved mirrors - Terms associated with concave mirrors |
By the end of the
lesson, the learner
should be able to:
- Describe interrelationships in Kenya national parks - Construct food chains and food webs of Kenya national parks - Value the importance of national parks for biodiversity - Explain the role of decomposers in ecosystems - Identify examples of decomposers - Appreciate the importance of decomposers in nutrient cycling |
- Research on interrelationships in Kenya national parks
- Construct food chains and food webs of Kenya national parks - Discuss the importance of national parks for biodiversity - Present findings to class - Discuss the role of decomposers in ecosystems - Observe pictures/videos of decomposers in action - Research on examples of decomposers - Create a model of nutrient cycling showing the role of decomposers |
What is the role of living and non-living factors in environments?
|
- Mentor Integrated Science Grade 9 (pg. 123)
- Pictures of Kenya national parks - Digital devices - Maps of Kenya national parks - Mentor Integrated Science Grade 9 (pg. 125) - Pictures/videos of decomposers - Digital devices - Materials to create models - Mentor Integrated Science (pg. 133) - Shiny spoons - Digital resources on curved mirrors - Mentor Integrated Science (pg. 135) - Digital resources - Charts showing the structure of a concave mirror |
- Observation
- Oral questions
- Food web construction assessment
- Presentations
- Observation - Oral questions - Model assessment - Written assignments |
|
10 | 3 |
Force and Energy
|
Curved mirrors - Determining focal length of concave mirror
Curved mirrors - Ray diagrams for concave mirrors Curved mirrors - Image formation by concave mirrors (beyond C) |
By the end of the
lesson, the learner
should be able to:
- Explain how to determine the focal length of a concave mirror - Perform an experiment to determine the focal length of a concave mirror - Value the practical approach in determining properties of mirrors |
- Set up a concave mirror to focus an image of a distant object on a screen
- Measure the distance between the mirror and the screen - Record and analyze the results to determine the focal length |
Why is it important to know the focal length of a concave mirror?
|
- Mentor Integrated Science (pg. 137)
- Concave mirrors - Rulers - White screens or plain paper - Mirror holders - Mentor Integrated Science (pg. 140) - Plain paper - Pencils - Drawing instruments - Mentor Integrated Science (pg. 143) - Digital resources |
- Observation
- Practical assessment
- Written reports
|
|
10 | 4 |
Force and Energy
|
Curved mirrors - Image formation by concave mirrors (at C)
Curved mirrors - Image formation by concave mirrors (between C and F) |
By the end of the
lesson, the learner
should be able to:
- Draw ray diagrams to locate images when objects are placed at C - Describe the characteristics of images formed - Show curiosity in investigating image formation |
- Draw ray diagrams to locate images when objects are placed at the center of curvature
- Determine the characteristics of images formed - Verify the results through practical observation |
What are the characteristics of images formed when objects are placed at the center of curvature?
|
- Mentor Integrated Science (pg. 144)
- Concave mirrors - Drawing instruments - Digital resources - Mentor Integrated Science (pg. 145) |
- Observation
- Ray diagram assessment
- Written descriptions
|
|
10 | 5 |
Force and Energy
|
Curved mirrors - Image formation by concave mirrors (at F)
Curved mirrors - Image formation by concave mirrors (between F and P) Curved mirrors - Characteristics of images formed by concave mirrors |
By the end of the
lesson, the learner
should be able to:
- Draw ray diagrams to locate images when objects are placed at F - Describe the characteristics of images formed - Show interest in understanding special cases of image formation |
- Draw ray diagrams to locate images when objects are placed at the principal focus
- Analyze what happens to reflected rays when objects are at F - Discuss the concept of images formed at infinity |
What happens to the image when an object is placed at the principal focus of a concave mirror?
|
- Mentor Integrated Science (pg. 147)
- Concave mirrors - Drawing instruments - Digital resources - Mentor Integrated Science (pg. 148) - Mentor Integrated Science (pg. 149) - Previous ray diagrams |
- Observation
- Ray diagram assessment
- Class discussion assessment
|
|
11 | 1-2 |
Force and Energy
|
Curved mirrors - Locating images formed by concave mirrors experimentally
Curved mirrors - Terms associated with convex mirrors Curved mirrors - Ray diagrams for convex mirrors Curved mirrors - Image formation by convex mirrors Curved mirrors - Locating images formed by convex mirrors experimentally |
By the end of the
lesson, the learner
should be able to:
- Set up an experiment to locate images formed by concave mirrors - Record and analyze experimental observations - Show interest in practical verification of theoretical concepts - Draw conventional ray diagrams for convex mirrors - Identify the four special rays used in ray diagrams for convex mirrors - Show interest in the ray diagram approach to locate images |
- Set up experiments to locate images formed by concave mirrors for different object positions
- Record observations in a structured table - Compare experimental results with theoretical predictions - Draw conventional ray diagrams of convex mirrors - Identify and draw the four types of rays used in ray diagrams for convex mirrors - Analyze how these rays help locate images |
How can we experimentally verify the characteristics of images formed by concave mirrors?
How do ray diagrams help in locating images formed by convex mirrors? |
- Mentor Integrated Science (pg. 150)
- Concave mirrors - Mirror holders - Screens - Candles or light sources - Rulers - Mentor Integrated Science (pg. 153) - Convex mirrors - Digital resources - Charts showing the structure of convex mirrors - Mentor Integrated Science (pg. 154) - Plain paper - Rulers - Pencils - Drawing instruments - Mentor Integrated Science (pg. 156) - Convex mirrors - Digital resources - Mentor Integrated Science (pg. 159) - Mirror holders - Objects of various sizes |
- Observation
- Practical assessment
- Written reports
- Observation - Drawing assessment - Written assignments |
|
11 | 3 |
Force and Energy
|
Curved mirrors - Applications of curved mirrors (concave mirrors)
Curved mirrors - Applications of curved mirrors (convex mirrors) |
By the end of the
lesson, the learner
should be able to:
- Identify applications of concave mirrors in daily life - Explain how the properties of concave mirrors make them suitable for specific applications - Appreciate the practical importance of curved mirrors |
- Research and discuss applications of concave mirrors (magnifying mirrors, dentist mirrors, solar concentrators, projectors)
- Explain how the image-forming properties of concave mirrors relate to their applications - Demonstrate applications using actual mirrors where possible |
What are the practical applications of concave mirrors in our daily lives?
|
- Mentor Integrated Science (pg. 161)
- Concave mirrors - Digital resources - Examples of devices using concave mirrors - Mentor Integrated Science (pg. 162) - Convex mirrors - Examples of devices using convex mirrors |
- Observation
- Oral presentations
- Written assignments
|
|
11 | 4 |
Force and Energy
|
Curved mirrors - Applications of curved mirrors (parabolic reflectors)
Waves - Meaning of waves Waves - Generating waves in nature |
By the end of the
lesson, the learner
should be able to:
- Identify applications of parabolic reflectors in daily life - Explain how the focusing properties of parabolic reflectors make them suitable for specific applications - Show interest in advanced applications of curved mirrors |
- Research and discuss applications of parabolic reflectors (solar cookers, car headlamps, photography equipment)
- Explain the special focusing properties of parabolic surfaces - Demonstrate applications using models or examples |
What are the practical applications of parabolic reflectors in our daily lives?
|
- Mentor Integrated Science (pg. 163)
- Digital resources - Examples of devices using parabolic reflectors - Mentor Integrated Science (pg. 166) - Basin with water - Small objects to drop in water - Mentor Integrated Science (pg. 167) - Rope - Speakers - Rice or sand |
- Observation
- Oral presentations
- Group projects
|
|
11 | 5 |
Force and Energy
|
Waves - Transverse and longitudinal waves
Waves - Classifying waves Waves - Amplitude and wavelength |
By the end of the
lesson, the learner
should be able to:
- Differentiate between transverse and longitudinal waves - Demonstrate the generation of both types of waves using a slinky spring - Show interest in classifying waves based on particle movement |
- Use a slinky spring to demonstrate transverse waves (moving left to right)
- Use a slinky spring to demonstrate longitudinal waves (moving to-and-fro) - Compare the motion of particles in both types of waves - Observe and record the differences between these wave types |
What is the difference between transverse and longitudinal waves?
|
- Mentor Integrated Science (pg. 169)
- Slinky springs - Cloth pieces for marking - Digital resources showing wave motion - Mentor Integrated Science (pg. 171) - Digital resources - Charts showing different wave types - Wave demonstration equipment - Mentor Integrated Science (pg. 172) - Wave diagrams - Rulers - Graph paper - Digital simulations |
- Observation
- Practical assessment
- Drawings and diagrams
- Written reports
|
|
12 | 1 |
Force and Energy
|
Waves - Frequency and period
Waves - Practical: Period of waves |
By the end of the
lesson, the learner
should be able to:
- Define frequency and period of waves - Describe the relationship between frequency and period - Show interest in quantitative aspects of wave motion |
- Search for the meaning of frequency and period using digital or print resources
- Discuss the motion of a mass on a string to illustrate oscillation - Create displacement-time graphs for oscillating objects - Establish the relationship between frequency and period |
What is the relationship between frequency and period in wave motion?
|
- Mentor Integrated Science (pg. 173)
- Digital resources - String and masses - Stopwatches - Graph paper - Mentor Integrated Science (pg. 175) - Stands with clamps - Strings - Masses |
- Observation
- Practical assessment
- Graph analysis
- Written assignments
|
|
12 |
END TERM EXAMS |
||||||||
13 |
REVISION OF END TERM ASSESSMENT AND REVISION |
||||||||
14 | 1 |
Force and Energy
|
Waves - Wave speed
Waves - Phase of waves |
By the end of the
lesson, the learner
should be able to:
- Explain how to determine the speed of a wave - Apply the wave speed equation v = fλ - Show interest in mathematical relationships in wave phenomena |
- Discuss how to calculate wave speed using the distance-time method
- Introduce the wave equation speed = wavelength × frequency - Solve example problems involving wave speed calculations - Perform calculations with different wave parameters |
How is the speed of a wave determined?
|
- Mentor Integrated Science (pg. 176)
- Calculators - Wave speed problems - Digital resources - Wave demonstration equipment - Mentor Integrated Science (pg. 178) - Stands with clamps - Strings and identical masses - Stopwatches - Graph paper |
- Observation
- Problem-solving exercises
- Mathematical calculations
- Written assignments
|
Your Name Comes Here