Home






SCHEME OF WORK
INTEGRATED SCIENCE
Grade 9 2025
TERM II
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN STRAND SUB-STRAND LESSON LEARNING OUTCOMES LEARNING EXPERIENCES KEY INQUIRY QUESTIONS LEARNING RESOURCES ASSESSMENT METHODS REFLECTION
2 1
Living Things and their Environment
Nutrition in plants - External structure of the leaf
By the end of the lesson, the learner should be able to:

- Identify the external parts of a leaf
- Draw and label external parts of a leaf
- Show interest in exploring plant structures
- Observe pictures showing external structure of a leaf
- Identify external parts of the leaf from the pictures
- Discuss the functions of each external part of the leaf
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 49)
- Charts showing external structure of leaf
- Digital resources
- Fresh leaves
- Observation - Oral questions - Drawings
2 2
Living Things and their Environment
Nutrition in plants - Functions of leaf parts
Nutrition in plants - Observing leaf structures
Nutrition in plants - Leaf adaptations for photosynthesis
Nutrition in plants - Internal structure of the leaf
By the end of the lesson, the learner should be able to:

- Describe the functions of external leaf parts
- Relate the structure of leaf parts to their functions
- Appreciate the diversity of leaf structures
- Discuss the functions of each external part of the leaf
- Relate the structure of leaf parts to their functions
- Share findings with classmates
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 50)
- Charts showing external structure of leaf
- Digital resources
- Fresh leaves
- Hand lens
- Drawing materials
- Mentor Integrated Science (pg. 51)
- Charts showing leaf adaptations
- Reference materials
- Mentor Integrated Science (pg. 52)
- Charts showing internal structure of leaf
- Models
- Observation - Written assignments - Oral presentations
2 3
Living Things and their Environment
Nutrition in plants - Leaf tissues for photosynthesis
Nutrition in plants - Internal adaptations for photosynthesis
Nutrition in plants - Structure of chloroplast
Nutrition in plants - Chloroplast adaptations
By the end of the lesson, the learner should be able to:

- Explain the functions of internal leaf tissues
- Relate internal leaf structures to photosynthesis
- Appreciate the complexity of leaf tissues
- Discuss the functions of different internal leaf tissues
- Relate the structure of internal leaf tissues to photosynthesis
- Share findings with classmates
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 53)
- Charts showing internal leaf tissues
- Digital resources
- Models
- Mentor Integrated Science (pg. 54)
- Charts showing internal leaf adaptations
- Reference materials
- Mentor Integrated Science (pg. 55)
- Charts showing structure of chloroplast
- Mentor Integrated Science (pg. 56)
- Photomicrographs of chloroplasts
- Charts showing chloroplast structure
- Observation - Written assignments - Oral presentations
2 4
Living Things and their Environment
Nutrition in plants - Process of photosynthesis
Nutrition in plants - Conditions for photosynthesis
Nutrition in plants - Stages of photosynthesis
By the end of the lesson, the learner should be able to:

- Explain the process of photosynthesis
- Identify raw materials and products of photosynthesis
- Show interest in understanding photosynthesis
- Discuss conditions and raw materials necessary for photosynthesis
- Identify products of photosynthesis
- Search for information on the process of photosynthesis
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 57)
- Charts showing photosynthesis process
- Digital resources
- Reference materials
- Mentor Integrated Science (pg. 58)
- Charts showing conditions for photosynthesis
- Mentor Integrated Science (pg. 59)
- Charts showing stages of photosynthesis
- Observation - Oral questions - Written assignments
3 1
Living Things and their Environment
Nutrition in plants - Testing for starch
Nutrition in plants - Light and photosynthesis
Nutrition in plants - Carbon (IV) oxide and photosynthesis
Nutrition in plants - Chlorophyll and photosynthesis
By the end of the lesson, the learner should be able to:

- Demonstrate the procedure for testing for starch in a leaf
- Explain why each step in the procedure is important
- Observe safety measures when carrying out experiments
- Set up an experiment to test for the presence of starch in a leaf
- Follow the correct procedure step by step
- Observe and record the results
- Explain why certain steps are necessary
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 60)
- Apparatus for testing starch in leaves
- Chemicals (iodine solution)
- Fresh leaves
- Heat source
- Mentor Integrated Science (pg. 61)
- Potted plants
- Aluminum foil/carbon paper
- Apparatus for testing starch
- Chemicals
- Mentor Integrated Science (pg. 62)
- Conical flasks with corks
- Potassium hydroxide solution
- Mentor Integrated Science (pg. 63)
- Variegated leaves
- Observation - Practical work - Written reports
3 2
Living Things and their Environment
Nutrition in plants - Importance of photosynthesis
Nutrition in plants - Environmental impact of photosynthesis
Nutrition in animals - Modes of nutrition in animals
Nutrition in animals - Parasitic mode of nutrition
By the end of the lesson, the learner should be able to:

- Explain the importance of photosynthesis in nature
- Relate photosynthesis to food production and oxygen release
- Appreciate the significance of photosynthesis
- Search for information on importance of photosynthesis
- Discuss how photosynthesis benefits plants, animals and the environment
- Make summary notes on importance of photosynthesis
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 64)
- Digital resources
- Charts showing importance of photosynthesis
- Reference materials
- Mentor Integrated Science (pg. 65)
- Charts showing carbon cycle
- Mentor Integrated Science Grade 9 (pg. 73)
- Digital devices
- Pictures of animals with different feeding habits
- Mentor Integrated Science Grade 9 (pg. 74)
- Pictures of parasitic animals
- Observation - Written assignments - Oral presentations
3 3
Living Things and their Environment
Nutrition in animals - Saprophytic mode of nutrition
Nutrition in animals - Symbiotic mode of nutrition
Nutrition in animals - Holozoic mode of nutrition
By the end of the lesson, the learner should be able to:

- Explain saprophytic mode of nutrition
- Identify organisms that exhibit saprophytic mode of nutrition
- Value the role of saprophytes in nutrient cycling
- Observe pictures/videos of saprophytic organisms
- Discuss the characteristics of saprophytic organisms
- Research on examples of saprophytic organisms
- Discuss the importance of saprophytes in the ecosystem
How do different animals feed?
- Mentor Integrated Science Grade 9 (pg. 74)
- Digital devices
- Pictures/videos of saprophytic organisms
- Mentor Integrated Science Grade 9 (pg. 75)
- Pictures of symbiotic relationships
- Pictures of animals with holozoic feeding
- Observation - Oral questions - Written assignments - Group discussions
3 4
Living Things and their Environment
Nutrition in animals - Types of teeth (structure)
Nutrition in animals - Types of teeth (functions)
Nutrition in animals - Dentition in animals (homodont and heterodont)
Nutrition in animals - Dentition in carnivores
By the end of the lesson, the learner should be able to:

- Identify different types of teeth
- Describe the structure of different types of teeth
- Appreciate the diversity in teeth structure
- Observe and draw different types of teeth
- Use models/charts to identify the structure of different types of teeth
- Discuss the structure and location of different types of teeth in the mouth
How is food digested in the human body?
- Mentor Integrated Science Grade 9 (pg. 76)
- Dental models or charts
- Digital devices
- Mentor Integrated Science Grade 9 (pg. 77)
- Mentor Integrated Science Grade 9 (pg. 78)
- Pictures of animal teeth
- Mentor Integrated Science Grade 9 (pg. 79)
- Pictures/models of carnivore teeth
- Observation - Drawing assessment - Oral questions - Written assignments
4 1
Living Things and their Environment
Nutrition in animals - Dentition in herbivores
Nutrition in animals - Dentition in omnivores
By the end of the lesson, the learner should be able to:

- Describe the dentition of herbivores
- Identify adaptations of herbivore teeth to their feeding habits
- Show interest in understanding herbivore dentition
- Observe pictures/models of herbivore teeth
- Discuss the adaptations of herbivore teeth to their feeding habits
- Research on examples of herbivores and their dentition
- Make presentations on herbivore dentition
How is food digested in the human body?
- Mentor Integrated Science Grade 9 (pg. 80)
- Pictures/models of herbivore teeth
- Digital devices
- Mentor Integrated Science Grade 9 (pg. 81)
- Pictures/models of omnivore teeth
- Observation - Oral questions - Written assignments - Presentations
4 2
Living Things and their Environment
Nutrition in animals - Process of digestion (ingestion)
By the end of the lesson, the learner should be able to:

- Explain the process of ingestion in human beings
- Describe the role of teeth and salivary glands in ingestion
- Appreciate the complexity of the digestive process
- Discuss the process of ingestion
- Using charts/models, identify structures involved in ingestion
- Demonstrate the role of teeth and saliva in ingestion
- Research on the process of ingestion
How is food digested in the human body?
- Mentor Integrated Science Grade 9 (pg. 82)
- Charts/models of the digestive system
- Digital devices
- Observation - Oral questions - Written assignments - Demonstrations
4 3
Living Things and their Environment
Nutrition in animals - Process of digestion (digestion)
Nutrition in animals - Process of digestion (absorption)
By the end of the lesson, the learner should be able to:

- Explain the process of digestion in human beings
- Identify organs involved in digestion and their functions
- Appreciate the importance of proper digestion
- Discuss the process of digestion in different parts of the digestive system
- Using charts/models, identify organs involved in digestion
- Research on mechanical and chemical digestion
- Present findings to the class
How is food digested in the human body?
- Mentor Integrated Science Grade 9 (pg. 83)
- Charts/models of the digestive system
- Digital devices
- Observation - Oral questions - Written assignments - Presentations
4 4
Living Things and their Environment
Nutrition in animals - Process of digestion (assimilation)
Nutrition in animals - Process of digestion (egestion)
By the end of the lesson, the learner should be able to:

- Explain the process of assimilation in human beings
- Describe how absorbed nutrients are utilized in the body
- Value the importance of proper nutrition for body functions
- Discuss the process of assimilation
- Research on how different nutrients are used in the body
- Create presentations on the process of assimilation
- Discuss the importance of proper nutrition
How is food digested in the human body?
- Mentor Integrated Science Grade 9 (pg. 84)
- Charts of the circulatory system
- Digital devices
- Charts/models of the large intestine
- Observation - Oral questions - Written assignments - Presentations
5 1
Living Things and their Environment
Reproduction in plants - Parts of a flower
Reproduction in plants - Functions of parts of a flower
Reproduction in plants - Meaning of pollination
Reproduction in plants - Types of pollination (self-pollination)
By the end of the lesson, the learner should be able to:

- Identify external parts of a flower
- Draw and label parts of a flower
- Appreciate the complexity of flower structure
- Collect and observe flowers from the school compound
- Identify and name the parts of the flowers
- Draw and label the parts of a flower
- Discuss the functions of the parts of a flower
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 86)
- Fresh flowers
- Hand lens
- Drawing materials
- Mentor Integrated Science Grade 9 (pg. 87)
- Flower models or charts
- Digital devices
- Mentor Integrated Science Grade 9 (pg. 88)
- Videos on pollination
- Charts showing pollination
- Mentor Integrated Science Grade 9 (pg. 89)
- Charts showing self-pollination
- Observation - Drawing assessment - Oral questions - Written assignments
5 2
Living Things and their Environment
Reproduction in plants - Types of pollination (cross-pollination)
Reproduction in plants - Agents of pollination (insects)
Reproduction in plants - Agents of pollination (birds, other animals)
Reproduction in plants - Agents of pollination (wind, water)
By the end of the lesson, the learner should be able to:

- Explain cross-pollination
- Identify plants that undergo cross-pollination
- Appreciate the advantages of cross-pollination
- Discuss cross-pollination
- Use diagrams/charts to illustrate cross-pollination
- Research on examples of plants that undergo cross-pollination
- Compare self-pollination and cross-pollination
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 89)
- Charts showing cross-pollination
- Digital devices
- Mentor Integrated Science Grade 9 (pg. 90)
- Pictures/videos of insect pollinators
- Pictures/videos of bird and animal pollinators
- Mentor Integrated Science Grade 9 (pg. 91)
- Pictures/videos of wind and water pollination
- Observation - Oral questions - Written assignments - Group presentations
5 3
Living Things and their Environment
Reproduction in plants - Adaptations of flowers to insect pollination
Reproduction in plants - Adaptations of flowers to wind pollination
By the end of the lesson, the learner should be able to:

- Identify adaptations of flowers to insect pollination
- Explain how these adaptations facilitate insect pollination
- Appreciate the relationship between structure and function
- Observe insect-pollinated flowers
- Identify and discuss adaptations to insect pollination
- Compare different insect-pollinated flowers
- Create presentations on adaptations to insect pollination
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 92)
- Fresh insect-pollinated flowers
- Pictures of insect-pollinated flowers
- Hand lens
- Mentor Integrated Science Grade 9 (pg. 93)
- Fresh wind-pollinated flowers
- Pictures of wind-pollinated flowers
- Observation - Oral questions - Written assignments - Group presentations
5 4
Living Things and their Environment
Reproduction in plants - Effects of agrochemicals on pollinating agents
Reproduction in plants - Fertilization in flowering plants
By the end of the lesson, the learner should be able to:

- Explain the effects of agrochemicals on pollinating agents
- Describe how these effects impact plant reproduction
- Show concern for the impact of human activities on pollinators
- Research on the effects of agrochemicals on pollinating agents
- Discuss how these effects impact plant reproduction
- Debate on the use of agrochemicals and their effects on pollination
- Present findings to class
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 94)
- Digital devices
- Articles on effects of agrochemicals on pollinators
- Mentor Integrated Science Grade 9 (pg. 95)
- Videos on fertilization in plants
- Charts showing fertilization process
- Observation - Oral questions - Written assignments - Debate assessment
6

MADARAKA DAY

6 2
Living Things and their Environment
Reproduction in plants - Seed formation in flowering plants
Reproduction in plants - Fruit formation in flowering plants
By the end of the lesson, the learner should be able to:

- Explain the process of seed formation in flowering plants
- Identify the changes that occur during seed formation
- Value the importance of seeds in plant reproduction
- Watch videos on seed formation
- Use diagrams/charts to illustrate seed formation
- Observe different stages of seed development if available
- Discuss the changes that occur during seed formation
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 96)
- Videos on seed formation
- Charts showing seed formation
- Samples of seeds at different developmental stages
- Mentor Integrated Science Grade 9 (pg. 97)
- Videos on fruit formation
- Charts showing fruit formation
- Samples of fruits at different developmental stages
- Observation - Oral questions - Written assignments - Drawing assessment
6 3
Living Things and their Environment
Reproduction in plants - Fruit and seed dispersal (meaning and importance)
By the end of the lesson, the learner should be able to:

- Explain the meaning of fruit and seed dispersal
- Describe the importance of fruit and seed dispersal
- Value the role of dispersal in plant reproduction
- Discuss the meaning of fruit and seed dispersal
- Research on the importance of fruit and seed dispersal
- Debate on what would happen if seeds were not dispersed
- Present findings to class
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 98)
- Digital devices
- Charts showing seed dispersal
- Observation - Oral questions - Written assignments - Debate assessment
6 4
Living Things and their Environment
Reproduction in plants - Modes of fruit and seed dispersal (animals)
Reproduction in plants - Modes of fruit and seed dispersal (wind, water)
By the end of the lesson, the learner should be able to:

- Explain animal dispersal of fruits and seeds
- Identify fruits and seeds dispersed by animals
- Appreciate the role of animals in plant reproduction
- Collect and observe fruits and seeds dispersed by animals
- Discuss the adaptations of these fruits and seeds for animal dispersal
- Research on examples of animal-dispersed fruits and seeds
- Create presentations on animal dispersal
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 99)
- Samples of animal-dispersed fruits and seeds
- Digital devices
- Pictures of animal dispersal
- Mentor Integrated Science Grade 9 (pg. 100)
- Samples of wind and water-dispersed fruits and seeds
- Pictures of wind and water dispersal
- Observation - Oral questions - Written assignments - Collection assessment
7 1
Living Things and their Environment
Reproduction in plants - Modes of fruit and seed dispersal (self-dispersal mechanisms)
Reproduction in plants - Adaptations of fruits and seeds for dispersal
By the end of the lesson, the learner should be able to:

- Explain self-dispersal mechanisms in fruits and seeds
- Identify fruits and seeds that use self-dispersal mechanisms
- Appreciate the diversity in dispersal mechanisms
- Observe fruits that use self-dispersal mechanisms
- Discuss the adaptations of these fruits and seeds for self-dispersal
- Research on examples of self-dispersed fruits and seeds
- Create presentations on self-dispersal mechanisms
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 101)
- Samples of self-dispersed fruits and seeds
- Digital devices
- Pictures of self-dispersal mechanisms
- Mentor Integrated Science Grade 9 (pg. 102)
- Various fruit and seed samples
- Hand lens
- Sorting trays
- Observation - Oral questions - Written assignments - Group presentations
7 2
Living Things and their Environment
Reproduction in plants - Role of flowers in nature
The interdependence of life - Components of the environment
The interdependence of life - Biotic factors (predation)
By the end of the lesson, the learner should be able to:

- Explain the role of flowers in nature
- Describe the ecological importance of flowers
- Appreciate the value of flowers in the ecosystem
- Discuss the role of flowers in nature
- Research on the ecological importance of flowers
- Debate on the value of flowers in the ecosystem
- Create presentations on the role of flowers in nature
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 105)
- Digital devices
- Pictures of different flowers and their roles
- Charts on flower roles in ecosystems
- Mentor Integrated Science Grade 9 (pg. 107)
- School grounds
- Notebooks
- Mentor Integrated Science Grade 9 (pg. 108)
- Pictures/videos of predator-prey relationships
- Observation - Oral questions - Written assignments - Group presentations
7 3
Living Things and their Environment
The interdependence of life - Biotic factors (parasitism)
The interdependence of life - Biotic factors (symbiosis)
The interdependence of life - Biotic factors (competition)
The interdependence of life - Biotic factors (saprophytic)
By the end of the lesson, the learner should be able to:

- Explain parasitism as a biotic interaction
- Identify examples of parasitic relationships
- Value the diversity of relationships in ecosystems
- Discuss parasitism as a biotic interaction
- Observe pictures/videos of parasitic relationships
- Research on examples of parasitic relationships
- Present findings to class
What is the role of living and non-living factors in environments?
- Mentor Integrated Science Grade 9 (pg. 109)
- Pictures/videos of parasitic relationships
- Digital devices
- Mentor Integrated Science Grade 9 (pg. 110)
- Pictures/videos of symbiotic relationships
- Mentor Integrated Science Grade 9 (pg. 111)
- Pictures/videos of competitive relationships
- Mentor Integrated Science Grade 9 (pg. 112)
- Pictures/videos of saprophytic organisms
- Observation - Oral questions - Written assignments - Group presentations
7 4
Living Things and their Environment
The interdependence of life - Abiotic factors (temperature)
The interdependence of life - Abiotic factors (light)
The interdependence of life - Abiotic factors (water)
By the end of the lesson, the learner should be able to:

- Explain how temperature affects living organisms
- Describe adaptations of organisms to different temperatures
- Value the importance of temperature in ecosystems
- Discuss how temperature affects living organisms
- Research on adaptations of organisms to different temperatures
- Observe pictures/videos of organisms in different temperature zones
- Present findings to class
What is the role of living and non-living factors in environments?
- Mentor Integrated Science Grade 9 (pg. 113)
- Thermometers
- Pictures/videos of organisms in different temperature zones
- Digital devices
- Mentor Integrated Science Grade 9 (pg. 114)
- Light meters (if available)
- Plants grown under different light conditions
- Mentor Integrated Science Grade 9 (pg. 115)
- Pictures of plants from arid and wet environments
- Water samples
- Observation - Oral questions - Written assignments - Group presentations
8 1
Living Things and their Environment
The interdependence of life - Abiotic factors (wind)
The interdependence of life - Abiotic factors (atmospheric pressure, pH and salinity)
By the end of the lesson, the learner should be able to:

- Explain how wind affects living organisms
- Describe adaptations of organisms to windy environments
- Appreciate the role of wind in ecosystems
- Discuss how wind affects living organisms
- Research on adaptations of organisms to windy environments
- Observe plants from windy and sheltered environments
- Present findings to class
What is the role of living and non-living factors in environments?
- Mentor Integrated Science Grade 9 (pg. 116)
- Pictures of plants from windy and sheltered environments
- Digital devices
- Mentor Integrated Science Grade 9 (pg. 117)
- pH testing equipment (if available)
- Water samples of different salinity
- Observation - Oral questions - Written assignments - Group presentations
8 2
Living Things and their Environment
The interdependence of life - Energy flow (food chains)
The interdependence of life - Energy flow (food webs)
By the end of the lesson, the learner should be able to:

- Explain the concept of food chains
- Construct simple food chains
- Appreciate energy flow in ecosystems
- Discuss the concept of food chains
- Identify producers and consumers in the environment
- Construct simple food chains using organisms observed in the local environment
- Present food chains to class
What is the role of living and non-living factors in environments?
- Mentor Integrated Science Grade 9 (pg. 118)
- Charts showing food chains
- Pictures of local organisms
- Digital devices
- Mentor Integrated Science Grade 9 (pg. 119)
- Charts showing food webs
- Observation - Oral questions - Food chain construction assessment - Written assignments
8-9

MIDTERM EXAMS AND MIDTERM BREAK

10 1
Living Things and their Environment
The interdependence of life - Human activities (habitat change)
The interdependence of life - Human activities (hunting and poaching)
By the end of the lesson, the learner should be able to:

- Explain how human activities lead to habitat change
- Describe the effects of habitat change on ecosystems
- Show concern for habitat conservation
- Discuss human activities that lead to habitat change
- Research on the effects of habitat change on ecosystems
- Debate on the balance between development and conservation
- Present findings to class
What is the role of living and non-living factors in environments?
- Mentor Integrated Science Grade 9 (pg. 120)
- Pictures showing habitat change
- Digital devices
- Newspaper articles
- Mentor Integrated Science Grade 9 (pg. 121)
- Pictures related to hunting and poaching
- Observation - Oral questions - Debate assessment - Written assignments
10 2
Living Things and their Environment
The interdependence of life - Human activities (introduction of new living things)
By the end of the lesson, the learner should be able to:

- Explain the effects of introducing new species to ecosystems
- Describe examples of invasive species and their impacts
- Appreciate the importance of biodiversity conservation
- Discuss the effects of introducing new species to ecosystems
- Research on examples of invasive species and their impacts
- Debate on the management of invasive species
- Present findings to class
What is the role of living and non-living factors in environments?
- Mentor Integrated Science Grade 9 (pg. 122)
- Pictures of invasive species
- Digital devices
- Newspaper articles
- Observation - Oral questions - Debate assessment - Written assignments
10 3
Living Things and their Environment
Force and Energy
The interdependence of life - Interrelationships in Kenya national parks
The interdependence of life - Role of decomposers in ecosystems
Curved mirrors - Types of curved mirrors
By the end of the lesson, the learner should be able to:

- Describe interrelationships in Kenya national parks
- Construct food chains and food webs of Kenya national parks
- Value the importance of national parks for biodiversity
- Research on interrelationships in Kenya national parks
- Construct food chains and food webs of Kenya national parks
- Discuss the importance of national parks for biodiversity
- Present findings to class
What is the role of living and non-living factors in environments?
- Mentor Integrated Science Grade 9 (pg. 123)
- Pictures of Kenya national parks
- Digital devices
- Maps of Kenya national parks
- Mentor Integrated Science Grade 9 (pg. 125)
- Pictures/videos of decomposers
- Materials to create models
- Mentor Integrated Science (pg. 133)
- Shiny spoons
- Digital resources on curved mirrors
- Observation - Oral questions - Food web construction assessment - Presentations
10 4
Force and Energy
Curved mirrors - Terms associated with concave mirrors
Curved mirrors - Determining focal length of concave mirror
Curved mirrors - Ray diagrams for concave mirrors
By the end of the lesson, the learner should be able to:

- Identify the terms associated with concave mirrors
- Describe the structure of a concave mirror
- Show interest in understanding the properties of concave mirrors
- Discuss the terms associated with concave mirrors (aperture, center of curvature, pole, principal axis, principal focus, focal length)
- Draw and label the parts of a concave mirror
- Watch animations explaining the terms associated with concave mirrors
How is the structure of the concave mirror important in image formation?
- Mentor Integrated Science (pg. 135)
- Digital resources
- Charts showing the structure of a concave mirror
- Mentor Integrated Science (pg. 137)
- Concave mirrors
- Rulers
- White screens or plain paper
- Mirror holders
- Mentor Integrated Science (pg. 140)
- Plain paper
- Pencils
- Drawing instruments
- Observation - Drawings and labels - Written assignments
11 1
Force and Energy
Curved mirrors - Image formation by concave mirrors (beyond C)
Curved mirrors - Image formation by concave mirrors (at C)
Curved mirrors - Image formation by concave mirrors (between C and F)
Curved mirrors - Image formation by concave mirrors (at F)
By the end of the lesson, the learner should be able to:

- Draw ray diagrams to locate images when objects are placed beyond C
- Describe the characteristics of images formed
- Appreciate the systematic approach in determining image properties
- Draw ray diagrams to locate images when objects are placed beyond the center of curvature
- Use the ray diagrams to determine image characteristics (size, position, nature)
- Compare theoretical predictions with practical observations
What are the characteristics of images formed when objects are placed beyond the center of curvature?
- Mentor Integrated Science (pg. 143)
- Concave mirrors
- Drawing instruments
- Digital resources
- Mentor Integrated Science (pg. 144)
- Mentor Integrated Science (pg. 145)
- Mentor Integrated Science (pg. 147)
- Observation - Ray diagram assessment - Written descriptions
11 2
Force and Energy
Curved mirrors - Image formation by concave mirrors (between F and P)
Curved mirrors - Characteristics of images formed by concave mirrors
Curved mirrors - Locating images formed by concave mirrors experimentally
Curved mirrors - Terms associated with convex mirrors
By the end of the lesson, the learner should be able to:

- Draw ray diagrams to locate images when objects are placed between F and P
- Describe the characteristics of images formed
- Appreciate the practical applications of this image formation
- Draw ray diagrams to locate images when objects are placed between the principal focus and the pole
- Determine the characteristics of images formed
- Discuss practical applications like magnifying mirrors
What are the characteristics of images formed when objects are placed between the principal focus and the pole?
- Mentor Integrated Science (pg. 148)
- Concave mirrors
- Drawing instruments
- Digital resources
- Mentor Integrated Science (pg. 149)
- Previous ray diagrams
- Mentor Integrated Science (pg. 150)
- Mirror holders
- Screens
- Candles or light sources
- Rulers
- Mentor Integrated Science (pg. 153)
- Convex mirrors
- Charts showing the structure of convex mirrors
- Observation - Ray diagram assessment - Written descriptions
11 3
Force and Energy
Curved mirrors - Ray diagrams for convex mirrors
Curved mirrors - Image formation by convex mirrors
Curved mirrors - Locating images formed by convex mirrors experimentally
By the end of the lesson, the learner should be able to:

- Draw conventional ray diagrams for convex mirrors
- Identify the four special rays used in ray diagrams for convex mirrors
- Show interest in the ray diagram approach to locate images
- Draw conventional ray diagrams of convex mirrors
- Identify and draw the four types of rays used in ray diagrams for convex mirrors
- Analyze how these rays help locate images
How do ray diagrams help in locating images formed by convex mirrors?
- Mentor Integrated Science (pg. 154)
- Plain paper
- Rulers
- Pencils
- Drawing instruments
- Mentor Integrated Science (pg. 156)
- Convex mirrors
- Digital resources
- Mentor Integrated Science (pg. 159)
- Mirror holders
- Objects of various sizes
- Observation - Drawing assessment - Written assignments
11 4
Force and Energy
Curved mirrors - Applications of curved mirrors (concave mirrors)
Curved mirrors - Applications of curved mirrors (convex mirrors)
Curved mirrors - Applications of curved mirrors (parabolic reflectors)
Waves - Meaning of waves
By the end of the lesson, the learner should be able to:

- Identify applications of concave mirrors in daily life
- Explain how the properties of concave mirrors make them suitable for specific applications
- Appreciate the practical importance of curved mirrors
- Research and discuss applications of concave mirrors (magnifying mirrors, dentist mirrors, solar concentrators, projectors)
- Explain how the image-forming properties of concave mirrors relate to their applications
- Demonstrate applications using actual mirrors where possible
What are the practical applications of concave mirrors in our daily lives?
- Mentor Integrated Science (pg. 161)
- Concave mirrors
- Digital resources
- Examples of devices using concave mirrors
- Mentor Integrated Science (pg. 162)
- Convex mirrors
- Examples of devices using convex mirrors
- Mentor Integrated Science (pg. 163)
- Examples of devices using parabolic reflectors
- Mentor Integrated Science (pg. 166)
- Basin with water
- Small objects to drop in water
- Observation - Oral presentations - Written assignments
12 1
Force and Energy
Waves - Generating waves in nature
Waves - Transverse and longitudinal waves
Waves - Classifying waves
Waves - Amplitude and wavelength
By the end of the lesson, the learner should be able to:

- Describe how to generate different types of waves
- Differentiate between mechanical and electromagnetic waves
- Appreciate the presence of waves in everyday phenomena
- Demonstrate generation of waves using a rope
- Generate water waves in a basin
- Observe how sound waves are generated using a speaker
- Discuss the difference between mechanical and electromagnetic waves
How are different types of waves generated in nature?
- Mentor Integrated Science (pg. 167)
- Rope
- Basin with water
- Speakers
- Rice or sand
- Mentor Integrated Science (pg. 169)
- Slinky springs
- Cloth pieces for marking
- Digital resources showing wave motion
- Mentor Integrated Science (pg. 171)
- Digital resources
- Charts showing different wave types
- Wave demonstration equipment
- Mentor Integrated Science (pg. 172)
- Wave diagrams
- Rulers
- Graph paper
- Digital simulations
- Observation - Practical assessment - Written reports
12 2
Force and Energy
Waves - Frequency and period
Waves - Practical: Period of waves
Waves - Wave speed
By the end of the lesson, the learner should be able to:

- Define frequency and period of waves
- Describe the relationship between frequency and period
- Show interest in quantitative aspects of wave motion
- Search for the meaning of frequency and period using digital or print resources
- Discuss the motion of a mass on a string to illustrate oscillation
- Create displacement-time graphs for oscillating objects
- Establish the relationship between frequency and period
What is the relationship between frequency and period in wave motion?
- Mentor Integrated Science (pg. 173)
- Digital resources
- String and masses
- Stopwatches
- Graph paper
- Mentor Integrated Science (pg. 175)
- Stands with clamps
- Strings
- Masses
- Mentor Integrated Science (pg. 176)
- Calculators
- Wave speed problems
- Wave demonstration equipment
- Observation - Practical assessment - Graph analysis - Written assignments
12 3
Force and Energy
Waves - Phase of waves
Waves - Oscillation in phase
Waves - Oscillation out of phase
Waves - Characteristics of waves: straight-line motion
By the end of the lesson, the learner should be able to:

- Explain the concept of phase in wave motion
- Differentiate between in-phase and out-of-phase oscillations
- Appreciate the mathematical precision in describing wave relationships
- Conduct experiments with identical pendulums oscillating in phase
- Observe pendulums with same frequency but different amplitudes
- Compare pendulums oscillating in opposite directions
- Create and analyze displacement-time graphs for different phase relationships
What determines whether waves are in phase or out of phase?
- Mentor Integrated Science (pg. 178)
- Stands with clamps
- Strings and identical masses
- Stopwatches
- Graph paper
- Mentor Integrated Science (pg. 179)
- Pendulum apparatus
- Measuring equipment
- Mentor Integrated Science (pg. 181)
- Mentor Integrated Science (pg. 183)
- Ripple tank
- Water
- Paper for tracing
- Rulers
- Observation - Practical assessment - Graph interpretation - Written reports
12 4
Force and Energy
Waves - Characteristics of waves: reflection
Waves - Characteristics of waves: bending
Waves - Characteristics of waves: diffraction
Waves - Remote sensing in relation to waves
Waves - Transmission, absorption and reflection in remote sensing
Waves - Applications of waves in everyday life
By the end of the lesson, the learner should be able to:

- Demonstrate reflection of waves in a ripple tank
- Verify that waves obey the laws of reflection
- Appreciate that various wave types follow similar behavior patterns
- Set up a ripple tank with barriers to demonstrate wave reflection
- Observe reflection patterns with barriers at different angles
- Compare the incident and reflected waves
- Verify the laws of reflection for water waves
How are waves reflected at barriers?
- Mentor Integrated Science (pg. 184)
- Ripple tank
- Water
- Metal strips as reflectors
- Paper for tracing wave patterns
- Mentor Integrated Science (pg. 185)
- Glass plate to create shallow region
- Mentor Integrated Science (pg. 186)
- Metal barriers with adjustable gaps
- Mentor Integrated Science (pg. 187)
- Digital resources
- Diagrams of remote sensing processes
- Video clips on remote sensing
- Mentor Integrated Science (pg. 188)
- Examples of remote sensing data
- Mentor Integrated Science (pg. 190)
- Examples of wave-based technologies
- Video clips on wave applications
- Observation - Practical assessment - Drawing analysis - Written reports
13

REVISIOV AND END OF TERM EXAMINATION

14

CLOSSING


Your Name Comes Here


Download

Feedback