If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Balanced chemical equations.
|
By the end of the
lesson, the learner
should be able to:
To balance chemical equations correctly. |
Exposition;
Supervised practice. |
text book
|
K.L.B. BOOK IIPP 24-25
|
|
2 | 2 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Balanced chemical equations.(contd)
|
By the end of the
lesson, the learner
should be able to:
To balance chemical equations correctly. |
Supervised practice;
Written exercise. |
text book
|
K.L.B. BOOK IIPP 25-8
|
|
2 | 3-4 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
CHEMICAL FAMILIES |
Balanced chemical equations.(contd)
Chemical properties of alkaline earth metals. Reaction of alkaline earth metals with oxygen. |
By the end of the
lesson, the learner
should be able to:
To balance chemical equations correctly. To describe reaction of alkaline earth metals with oxygen |
Supervised practice;
Written exercise. Q/A: Review reactions of Mg, Ca, with oxygen. The corresponding word and then chemical equations are then written and their correctness verified by the teacher. |
text book
|
K.L.B. BOOK IIPP 25-8
K.L.B. BOOK IIP. 38 |
|
3 | 1 |
CHEMICAL FAMILIES
|
Chemical properties of alkaline earth metals.
Reaction of alkaline earth metals with water.
|
By the end of the
lesson, the learner
should be able to:
To describe reaction of alkaline earth metals with water. |
Q/A: Review reaction of metals with water.
Writing down word and balanced chemical equations for the reactions. Deduce and discuss the order of reactivity down the group. |
Some alkaline earth metals.
|
K.L.B. BOOK IIP. 39
|
|
3 | 2 |
CHEMICAL FAMILIES
|
Reaction of alkaline earth metals with chlorine gas.
|
By the end of the
lesson, the learner
should be able to:
To write balanced equations for reaction of alkaline earth metals with chlorine gas. |
Teacher demonstration- Reaction of sodium with chlorine in a fume chamber.
Q/A: Students to predict a similar reaction between potassium and chlorine. Word and balanced chemical equations for various reactions. Supervised practice. |
Sodium, chlorine.
|
K.L.B. BOOK II P. 41
|
|
3 | 3-4 |
CHEMICAL FAMILIES
|
Reaction of alkaline earth metals with chlorine gas.
Reaction of alkaline earth metals with dilute acids. |
By the end of the
lesson, the learner
should be able to:
To write balanced equations for reaction of alkaline earth metals with chlorine gas. To write balanced equations for reactions of alkaline earth metals with dilute acids. |
Teacher demonstration- Reaction of sodium with chlorine in a fume chamber.
Q/A: Students to predict a similar reaction between potassium and chlorine. Word and balanced chemical equations for various reactions. Supervised practice. Changing word to chemical equations. Supervised practice. |
Sodium, chlorine.
revision book |
K.L.B. BOOK II P. 41
K.L.B. BOOK II PP. 43 |
|
4 | 1 |
CHEMICAL FAMILIES
|
Chemical formulae of alkaline earth metals.
|
By the end of the
lesson, the learner
should be able to:
Write chemical formulae for compounds of alkaline earth metals. Explain formation of hydroxides, oxides and chlorides of alkaline earth metals. |
Exercise: Completing a table of hydroxides, oxides and chlorides of alkaline earth metals.
Discuss combination of ions of alkaline earth metals with anions. |
text book
|
K.L.B. BOOK II PP. 45-47
|
|
4 | 2 |
CHEMICAL FAMILIES
|
Uses of some alkaline earth metals and their compounds.
|
By the end of the
lesson, the learner
should be able to:
State uses of alkaline earth metals. |
Descriptive approach: Teacher elucidates uses of alkaline earth metals.
|
text book
|
K.L.B. BOOK II PP. 45-47
|
|
4 | 3-4 |
CHEMICAL FAMILIES
|
Halogens.
Physical properties of halogens.
Comparative physical properties of halogens. Chemical properties of halogens. |
By the end of the
lesson, the learner
should be able to:
Identify halogens in the periodic table. Give examples of halogens. Identify physical states of halogens. To state and explain the trends in physical properties of halogens. |
Teacher demonstration: - To examine electrical properties of iodine, solubility in water of chlorine.
Examine a comparative table of physical properties of halogens. Discuss the deductions made from the table. |
Iodine crystals, electrical wire, a bulb.
text book Chlorine, iron wool, bromine. |
KLB BK II
P. 47 K.L.B. BOOK II P. 47 |
|
5 | 1 |
CHEMICAL FAMILIES
|
Equations of reaction of halogens with metals.
|
By the end of the
lesson, the learner
should be able to:
To write balanced chemical equations of reactions involving halogens. |
Re-write word equations as chemical equations then balance them.
Supervised practice. |
text book
|
K.L.B. BOOK II P. 50
|
|
5 | 2 |
CHEMICAL FAMILIES
|
Reaction of halogens with water.
|
By the end of the
lesson, the learner
should be able to:
To describe reaction of halogens with water and the results obtained. |
Bubbling chlorine gas through water.
Carry out litmus test for the water. Explain the observations. |
Chlorine gas, litmus papers.
|
K.L.B. BOOK II P. 51
|
|
5 | 3-4 |
CHEMICAL FAMILIES
|
Reaction of halogens with water.
Some uses of halogens and their compounds. |
By the end of the
lesson, the learner
should be able to:
To describe reaction of halogens with water and the results obtained. To state uses of halogens and their compounds. |
Bubbling chlorine gas through water.
Carry out litmus test for the water. Explain the observations. Teacher elucidates uses of halogens and their compounds. |
Chlorine gas, litmus papers.
text book |
K.L.B. BOOK II P. 51
K.L.B. BOOK II pp 52 |
|
6 | 1 |
CHEMICAL FAMILIES
STRUCTURE & BONDING |
Noble Gases.
Comparative physical properties of noble gases.
Uses of noble gases. Chemical bonds. Ionic bond. |
By the end of the
lesson, the learner
should be able to:
To describe physical properties of noble gases. To explain physical properties of noble gases. |
Make A comparative analysis of tabulated physical properties of noble gases.
|
text book
|
K.L.B. BOOK IIPP. 52-53
|
|
6 | 2 |
STRUCTURE & BONDING
|
Ionic bond representation.
Grant ionic structures. |
By the end of the
lesson, the learner
should be able to:
Use dot and cross diagrams to represent ionic bonding. |
Drawing diagrams of ionic bonds.
|
Chart- dot and cross diagrams.
Models for bonding. Giant sodium chloride model. |
K.L.B. BOOK II P. 58
|
|
6 | 3-4 |
STRUCTURE & BONDING
|
Physical properties of ionic compounds.
Covalent bond. Co-ordinate bond. |
By the end of the
lesson, the learner
should be able to:
Describe physical properties of ionic compounds. Explain the differences in the physical properties of ionic compounds. Explain the formation of covalent bond Use dot and cross diagrams to represent covalent bond. |
Analyse tabulated comparative physical properties of ionic compounds.
Teacher asks probing questions. Exposition: Shared pair of electrons in a hydrogen molecule, H2O, NH3, Cl2, and CO2. Drawing of dot-and-cross diagrams of covalent bonds. |
text book
|
K.L.B. BOOK IIPP 58-59
K.L.B. BOOK II PP 60-63 |
|
7 | 1 |
STRUCTURE & BONDING
|
Molecular structure.
Trend in physical properties of molecular structures. |
By the end of the
lesson, the learner
should be able to:
To describe the molecular structure. To give examples of substance exhibiting molecular structure |
Discussion ? To explain formation of the giant structure and give examples of substance exhibiting molecular structure.
|
text book
Sugar, naphthalene, iodine rhombic sulphur. |
K.L.B. BOOK IIP 65
|
|
7 | 2 |
STRUCTURE & BONDING
|
Giant atomic structure in diamond.
Giant atomic structure in graphite. |
By the end of the
lesson, the learner
should be able to:
To describe giant atomic structure in diamond. To state uses of diamond. |
Diagrammatic representation of diamond.
Discuss uses of diamond. |
Diagrams in textbooks.
|
K.L.B. BOOK II P 69
|
|
7 | 3-4 |
STRUCTURE & BONDING
PROPERTIES AND TRENDS ACROSS PERIOD THREE |
Metallic bond.
Uses of some metals.
Physical properties of elements in periods. |
By the end of the
lesson, the learner
should be able to:
To describe mutual electronic forces between electrons and nuclei. To describe metallic bond. To compare physical properties of metals. To state uses of some metals. To compare electrical conductivity of elements in period 3 |
Discussion:
Detailed analysis of comparative physical properties of metals and their uses. Probing questions & brief explanations. Group experiments- Construct electrical circuits incorporating a magnesium ribbon, then aluminum foil, then sulphur in turns. The brightness of the bulb is noted in each case. Discuss the observations in terms of delocalised electrons. |
text book
The periodic table. |
K.L.B. BOOK IIP 70
K.L.B. BOOK IIP. 76 |
|
8 |
Midterm 2 exam |
|||||||
9 |
Midterm 2 break |
|||||||
10 | 1 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
|
Physical properties of elements in period 3.
Chemical properties of elements in period 3. |
By the end of the
lesson, the learner
should be able to:
To compare other physical properties of elements across period 3. |
Analyse comparative physical properties presented in form of a table.
Explain the trend in the physical properties given. |
The periodic table.
|
K.L.B. BOOK II P. 77
|
|
10 | 2 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
|
Chemical properties of elements in the third period.
|
By the end of the
lesson, the learner
should be able to:
To compare reactions of elements in period 3 with water |
Q/A: Review reaction of sodium, Mg, chlorine, with water.
Infer that sodium is most reactive metal; non-metals do not react with water. |
The periodic table.
|
K.L.B. BOOK II PP. 80-81
|
|
10 | 3-4 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
SALTS |
Oxides of period 3 elements.
Chlorides of period 3 elements. Types of salts. |
By the end of the
lesson, the learner
should be able to:
To identify bonds across elements in period 3. To explain chemical behavior of their oxide. Define a salt. Describe various types of salts and give several examples in each case. |
Comparative analysis, discussion and explanation.
Descriptive approach. Teacher exposes new concepts. |
The periodic table.
text book |
K.L.B. BOOK II P. 84
K.L.B. BOOK II P. 91 |
|
11 | 1 |
SALTS
|
Solubility of salts in water.
|
By the end of the
lesson, the learner
should be able to:
To test solubility of various salts in cold water/warm water. |
Class experiments- Dissolve salts in 5 cc of water.
Record the solubility in a table, Analyse the results. |
Sulphates, chlorides, nitrates, carbonates of various metals.
|
K.L.B. BOOK II PP. 92-93
|
|
11 | 2 |
SALTS
|
Solubility of bases in water.
|
By the end of the
lesson, the learner
should be able to:
To test solubility of various bases in water. To carry out litmus test on the resulting solutions. |
Class experiments- Dissolve salts in 5cc of water.
Record the solubility in a table, Carry out litmus tests. Discuss the results. |
Oxides, hydroxides, of various metals, litmus papers.
|
K.L.B. BOOK IIPP. 94-95
|
|
11 | 3-4 |
SALTS
|
Methods of preparing various salts.
Direct synthesis of a salts. |
By the end of the
lesson, the learner
should be able to:
To describe various methods of preparing some salts. To describe direct synthesis of a salt. To write balanced equations for the reactions. |
Experimental and descriptive treatments of preparation of salts e.g. ZnSO4, CuSO4, NaCl and Pb(NO3)2.
Group experiments- preparation of iron (II) sulphide by direct synthesis. Give other examples of salts prepared by direct synthesis. Students write down corresponding balanced equations. |
CuO, H2SO4, HCl, NaOH, PbCO3, dil HNO3.
Iron, Sulphur |
K.L.B. BOOK II pp96
K.L.B. BOOK II P. 104 |
|
12 | 1 |
SALTS
|
Ionic equations.
Effects of heat on carbonates. |
By the end of the
lesson, the learner
should be able to:
To identify spectator ions in double decomposition reactions. To write ionic equations correctly. |
Q/A: Ions present in given reactants.
Deduce the products of double decomposition reactions. Give examples of equations. Supervised practice. |
PbNO3, MgSO4 solutions.
Various carbonates. |
K.L.B. BOOK II
|
|
12 | 2 |
SALTS
|
Effects of heat on nitrates.
Effects of heat on sulphates. |
By the end of the
lesson, the learner
should be able to:
To state effects of heat on nitrates. To predict products resulting from heating metal nitrates. |
Group experiments- To investigate effects of heat on various metal nitrates.
Observe various colour changes before, during and after heating. Write equations for the reactions. |
Common metal nitrates.
Common sulphates. |
K.L.B. BOOK II PP. 110-111
|
|
12 | 3-4 |
SALTS
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES. |
Hygroscopy, Deliquescence and Efflorescence.
Uses of salts. Electrical conductivity. |
By the end of the
lesson, the learner
should be able to:
To define hygroscopic deliquescent and efflorescent salts. To give examples of hygroscopic deliquescent and efflorescent salts. To test for electrical conductivities of substances. |
Prepare a sample of various salts.
Expose them to the atmosphere overnight. Students classify the salts as hygroscopic, deliquescent and / or efflorescent. Group experiments- to identify conductors and non-conductors. Explain the difference in (non) conductivities. |
Various solids, bulb, battery, & wires. |
K.L.B. BOOK II P. 114
K.L.B. BOOK II PP. 118-119 |
|
13 |
End Term 2 exam |
|||||||
14 |
End Term 2 closing week |
Your Name Comes Here