Home






SCHEME OF WORK
INTEGRATED SCIENCE
Grade 9 2025
TERM II
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN STRAND SUB-STRAND LESSON LEARNING OUTCOMES LEARNING EXPERIENCES KEY INQUIRY QUESTIONS LEARNING RESOURCES ASSESSMENT METHODS REFLECTION
1 1
Force and Energy
Curved mirrors - Types of curved mirrors
By the end of the lesson, the learner should be able to:

- Describe the types of curved mirrors
- Differentiate between concave and convex mirrors
- Appreciate the applications of curved mirrors in day to day life
- Discuss the types of curved mirrors (concave, convex, and parabolic surfaces)
- Use shiny spoons to demonstrate the difference between concave and convex reflective surfaces
- Observe and record how images are formed by the inner and outer surfaces of the spoon
How are curved mirrors used in day to day life?
- Mentor Integrated Science (pg. 133)
- Shiny spoons
- Digital resources on curved mirrors
- Observation - Oral questions - Written assignments
2
Force and Energy
Curved mirrors - Terms associated with concave mirrors
By the end of the lesson, the learner should be able to:

- Identify the terms associated with concave mirrors
- Describe the structure of a concave mirror
- Show interest in understanding the properties of concave mirrors
- Discuss the terms associated with concave mirrors (aperture, center of curvature, pole, principal axis, principal focus, focal length)
- Draw and label the parts of a concave mirror
- Watch animations explaining the terms associated with concave mirrors
How is the structure of the concave mirror important in image formation?
- Mentor Integrated Science (pg. 135)
- Digital resources
- Charts showing the structure of a concave mirror
- Observation - Drawings and labels - Written assignments
2 1
Force and Energy
Curved mirrors - Determining focal length of concave mirror
By the end of the lesson, the learner should be able to:

- Explain how to determine the focal length of a concave mirror
- Perform an experiment to determine the focal length of a concave mirror
- Value the practical approach in determining properties of mirrors
- Set up a concave mirror to focus an image of a distant object on a screen
- Measure the distance between the mirror and the screen
- Record and analyze the results to determine the focal length
Why is it important to know the focal length of a concave mirror?
- Mentor Integrated Science (pg. 137)
- Concave mirrors
- Rulers
- White screens or plain paper
- Mirror holders
- Observation - Practical assessment - Written reports
2
Force and Energy
Curved mirrors - Ray diagrams for concave mirrors
By the end of the lesson, the learner should be able to:

- Draw conventional ray diagrams for concave mirrors
- Identify the four special rays used in ray diagrams
- Show interest in the ray diagram approach to locate images
- Draw conventional ray diagrams of concave mirrors
- Identify and draw the four types of rays used in ray diagrams (ray through center of curvature, ray parallel to principal axis, ray through focus, ray through pole)
- Analyze how these rays help locate images
How do ray diagrams help in locating images formed by concave mirrors?
- Mentor Integrated Science (pg. 140)
- Plain paper
- Rulers
- Pencils
- Drawing instruments
- Observation - Drawing assessment - Written assignments
3 1
Force and Energy
Curved mirrors - Image formation by concave mirrors (beyond C)
By the end of the lesson, the learner should be able to:

- Draw ray diagrams to locate images when objects are placed beyond C
- Describe the characteristics of images formed
- Appreciate the systematic approach in determining image properties
- Draw ray diagrams to locate images when objects are placed beyond the center of curvature
- Use the ray diagrams to determine image characteristics (size, position, nature)
- Compare theoretical predictions with practical observations
What are the characteristics of images formed when objects are placed beyond the center of curvature?
- Mentor Integrated Science (pg. 143)
- Concave mirrors
- Drawing instruments
- Digital resources
- Observation - Ray diagram assessment - Written descriptions
2
Force and Energy
Curved mirrors - Image formation by concave mirrors (at C)
By the end of the lesson, the learner should be able to:

- Draw ray diagrams to locate images when objects are placed at C
- Describe the characteristics of images formed
- Show curiosity in investigating image formation
- Draw ray diagrams to locate images when objects are placed at the center of curvature
- Determine the characteristics of images formed
- Verify the results through practical observation
What are the characteristics of images formed when objects are placed at the center of curvature?
- Mentor Integrated Science (pg. 144)
- Concave mirrors
- Drawing instruments
- Digital resources
- Observation - Ray diagram assessment - Written descriptions
4 1
Force and Energy
Curved mirrors - Image formation by concave mirrors (between C and F)
By the end of the lesson, the learner should be able to:

- Draw ray diagrams to locate images when objects are placed between C and F
- Describe the characteristics of images formed
- Appreciate the systematic approach in determining image properties
- Draw ray diagrams to locate images when objects are placed between the center of curvature and the principal focus
- Determine the characteristics of images formed
- Verify the results through practical observation
What are the characteristics of images formed when objects are placed between the center of curvature and the principal focus?
- Mentor Integrated Science (pg. 145)
- Concave mirrors
- Drawing instruments
- Digital resources
- Observation - Ray diagram assessment - Written descriptions
2
Force and Energy
Curved mirrors - Image formation by concave mirrors (at F)
By the end of the lesson, the learner should be able to:

- Draw ray diagrams to locate images when objects are placed at F
- Describe the characteristics of images formed
- Show interest in understanding special cases of image formation
- Draw ray diagrams to locate images when objects are placed at the principal focus
- Analyze what happens to reflected rays when objects are at F
- Discuss the concept of images formed at infinity
What happens to the image when an object is placed at the principal focus of a concave mirror?
- Mentor Integrated Science (pg. 147)
- Concave mirrors
- Drawing instruments
- Digital resources
- Observation - Ray diagram assessment - Class discussion assessment
5 1
Force and Energy
Curved mirrors - Image formation by concave mirrors (between F and P)
By the end of the lesson, the learner should be able to:

- Draw ray diagrams to locate images when objects are placed between F and P
- Describe the characteristics of images formed
- Appreciate the practical applications of this image formation
- Draw ray diagrams to locate images when objects are placed between the principal focus and the pole
- Determine the characteristics of images formed
- Discuss practical applications like magnifying mirrors
What are the characteristics of images formed when objects are placed between the principal focus and the pole?
- Mentor Integrated Science (pg. 148)
- Concave mirrors
- Drawing instruments
- Digital resources
- Observation - Ray diagram assessment - Written descriptions
2
Force and Energy
Curved mirrors - Characteristics of images formed by concave mirrors
By the end of the lesson, the learner should be able to:

- Summarize characteristics of images formed by concave mirrors for different object positions
- Create a comprehensive table of image characteristics
- Value the systematic organization of scientific information
- Create a summary table of image characteristics for different object positions (at infinity, beyond C, at C, between C and F, at F, between F and P)
- Discuss the patterns and relationships observed
- Compare theoretical predictions with practical observations
How do image characteristics vary with object position for concave mirrors?
- Mentor Integrated Science (pg. 149)
- Concave mirrors
- Digital resources
- Previous ray diagrams
- Observation - Table completion assessment - Written assignments
6 1
Force and Energy
Curved mirrors - Locating images formed by concave mirrors experimentally
By the end of the lesson, the learner should be able to:

- Set up an experiment to locate images formed by concave mirrors
- Record and analyze experimental observations
- Show interest in practical verification of theoretical concepts
- Set up experiments to locate images formed by concave mirrors for different object positions
- Record observations in a structured table
- Compare experimental results with theoretical predictions
How can we experimentally verify the characteristics of images formed by concave mirrors?
- Mentor Integrated Science (pg. 150)
- Concave mirrors
- Mirror holders
- Screens
- Candles or light sources
- Rulers
- Observation - Practical assessment - Written reports
2
Force and Energy
Curved mirrors - Terms associated with convex mirrors
By the end of the lesson, the learner should be able to:

- Identify the terms associated with convex mirrors
- Compare the structure of convex mirrors with concave mirrors
- Appreciate the differences between concave and convex mirrors
- Discuss the terms associated with convex mirrors (aperture, center of curvature, pole, principal axis, principal focus, focal length)
- Draw and label the parts of a convex mirror
- Compare terms used in convex mirrors with those in concave mirrors
How does the structure of convex mirrors differ from concave mirrors?
- Mentor Integrated Science (pg. 153)
- Convex mirrors
- Digital resources
- Charts showing the structure of convex mirrors
- Observation - Drawings and labels - Written assignments
7

MID TERM ASSESSMENT

8

MID TERM BREAK

9 1
Force and Energy
Curved mirrors - Ray diagrams for convex mirrors
By the end of the lesson, the learner should be able to:

- Draw conventional ray diagrams for convex mirrors
- Identify the four special rays used in ray diagrams for convex mirrors
- Show interest in the ray diagram approach to locate images
- Draw conventional ray diagrams of convex mirrors
- Identify and draw the four types of rays used in ray diagrams for convex mirrors
- Analyze how these rays help locate images
How do ray diagrams help in locating images formed by convex mirrors?
- Mentor Integrated Science (pg. 154)
- Plain paper
- Rulers
- Pencils
- Drawing instruments
- Observation - Drawing assessment - Written assignments
2
Force and Energy
Curved mirrors - Image formation by convex mirrors
By the end of the lesson, the learner should be able to:

- Draw ray diagrams to locate images formed by convex mirrors
- Describe the characteristics of images formed by convex mirrors
- Appreciate the consistent nature of images formed by convex mirrors
- Draw ray diagrams to locate images formed by convex mirrors for different object positions
- Determine the characteristics of images formed
- Discuss why convex mirrors always form virtual, upright, and diminished images
What are the characteristics of images formed by convex mirrors?
- Mentor Integrated Science (pg. 156)
- Convex mirrors
- Drawing instruments
- Digital resources
- Observation - Ray diagram assessment - Written descriptions
10 1
Force and Energy
Curved mirrors - Locating images formed by convex mirrors experimentally
By the end of the lesson, the learner should be able to:

- Set up an experiment to locate images formed by convex mirrors
- Record and analyze experimental observations
- Show interest in practical verification of theoretical concepts
- Set up experiments to observe images formed by convex mirrors
- Record observations about the nature, size, and position of images
- Compare experimental results with theoretical predictions
How can we experimentally verify the characteristics of images formed by convex mirrors?
- Mentor Integrated Science (pg. 159)
- Convex mirrors
- Mirror holders
- Objects of various sizes
- Rulers
- Observation - Practical assessment - Written reports
2
Force and Energy
Curved mirrors - Applications of curved mirrors (concave mirrors)
By the end of the lesson, the learner should be able to:

- Identify applications of concave mirrors in daily life
- Explain how the properties of concave mirrors make them suitable for specific applications
- Appreciate the practical importance of curved mirrors
- Research and discuss applications of concave mirrors (magnifying mirrors, dentist mirrors, solar concentrators, projectors)
- Explain how the image-forming properties of concave mirrors relate to their applications
- Demonstrate applications using actual mirrors where possible
What are the practical applications of concave mirrors in our daily lives?
- Mentor Integrated Science (pg. 161)
- Concave mirrors
- Digital resources
- Examples of devices using concave mirrors
- Observation - Oral presentations - Written assignments
11 1
Force and Energy
Curved mirrors - Applications of curved mirrors (convex mirrors)
By the end of the lesson, the learner should be able to:

- Identify applications of convex mirrors in daily life
- Explain how the properties of convex mirrors make them suitable for specific applications
- Value the role of curved mirrors in enhancing safety and efficiency
- Research and discuss applications of convex mirrors (driving mirrors, security mirrors, eliminating blind spots)
- Explain how the wide field of view property of convex mirrors relates to their applications
- Observe examples of convex mirrors in use
What are the practical applications of convex mirrors in our daily lives?
- Mentor Integrated Science (pg. 162)
- Convex mirrors
- Digital resources
- Examples of devices using convex mirrors
- Observation - Oral presentations - Written assignments
2
Force and Energy
Curved mirrors - Applications of curved mirrors (parabolic reflectors)
By the end of the lesson, the learner should be able to:

- Identify applications of parabolic reflectors in daily life
- Explain how the focusing properties of parabolic reflectors make them suitable for specific applications
- Show interest in advanced applications of curved mirrors
- Research and discuss applications of parabolic reflectors (solar cookers, car headlamps, photography equipment)
- Explain the special focusing properties of parabolic surfaces
- Demonstrate applications using models or examples
What are the practical applications of parabolic reflectors in our daily lives?
- Mentor Integrated Science (pg. 163)
- Digital resources
- Examples of devices using parabolic reflectors
- Observation - Oral presentations - Group projects
12

END TERM ASSESSMENT

13

CAMP MEETING


Your Name Comes Here


Download

Feedback