Home






SCHEME OF WORK
Chemistry
Form 2 2025
TERM II
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 1
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Atomic and mass numbers.
By the end of the lesson, the learner should be able to:


Name the subatomic particles in an atom.
Define atomic number and mass number of an atom.
Represent atomic and mass numbers symbolically.
Exposition on new concepts;
Probing questions;
Brief discussion.
text book
K.L.B.
BOOK II

PP. 1-3
2 2
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
First twenty elements of the periodic table.
By the end of the lesson, the learner should be able to:
List the first twenty elements of the periodic table.
Write chemical symbols of the first twenty elements of the periodic table.
Expository approach: referring to the periodic table, teacher exposes the first twenty elements.
Writing down a list of first twenty elements of the periodic table.
Periodic table.
K.L.B.
BOOK II

PP. 1-3
2 3-4
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Isotopes.
Electronic configuration.
By the end of the lesson, the learner should be able to:
Define isotopes.
Give examples of isotopes.

Represent isotopes symbolically.
Define an energy level.
Describe electronic configuration in an atom.
Exposition of definition and examples of isotopes.
Giving examples of isotopes.

Exposition ? teacher exposes new concepts about electronic configuration.
Written exercise.
Periodic table.
K.L.B.
BOOK II
P. 4





PP. 5-8
K.L.B.
BOOK II
P. 4





PP. 5-9
3 1
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Electronic configuration in diagrams.
By the end of the lesson, the learner should be able to:
Represent electronic configuration diagrammatically.
Supervised practice;
Written exercise.
text book
K.L.B.
BOOK II
PP. 5-8
3 2
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Periods of the periodic table.
By the end of the lesson, the learner should be able to:
Identify elements of the same period.
Exposition ? Definition of a period.
Q/A: Examples of elements of the same period.
Periodic table.
K.L.B. BOOK IIP. 9
3 3-4
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Groups of the periodic table.
R.M.M. and isotopes.
By the end of the lesson, the learner should be able to:
Identify elements of the same period.
Calculate R.M.M. from isotopic composition.
Exposition ? definition of a group.
Q/A: examples of elements of the same group.
Supervised practice involving calculation of RMM from isotopic composition.
Periodic table.
text book
K.L.B. BOOK IIP. 9
K.L.B. BOOK IIPP. 11-13
4 1
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Positive ions and ion formation.
By the end of the lesson, the learner should be able to:
To define an ion and a cation.
Teacher gives examples of stable atoms.
Guided discovery that metals need to lose one, two or three electrons to attain stability.
Examples of positive ions.

text book
K.L.B. BOOK IIPP 14-15
4 2
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Positive ions representation.
By the end of the lesson, the learner should be able to:
To represent formation of positive ions symbolically.
Diagrammatic representation of cations.
Chart  ion model.
K.L.B. BOOK IIP 16
4 3-4
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Negative ions and ion formation.
Valencies of metals.
Valencie of non-metals.
By the end of the lesson, the learner should be able to:
To define an anion.
To describe formation of negative ions symbolically.
Recall valencies of non-metals among the first twenty elements in the periodic table.
Teacher gives examples of stable atoms.
Guided discovery of formation of negative ions.
Diagrammatic representation of anions.

Q/A to review previous lesson;
Exposition;
Guided discovery.
Chart  ion model.
Periodic table.
K.L.B. BOOK IIP 17
5 1
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Valencies of radicals.
By the end of the lesson, the learner should be able to:
Define a radical.
Recall the valencies of common radicals.
Exposition ? teacher defines a radical, gives examples of radicals and exposes their valencies.
Students draw a table of radicals and their valencies.
text book
K.L.B. BOOK IIP 18
5 2
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Oxidation number.
By the end of the lesson, the learner should be able to:
Define oxidation number.
Predict oxidation numbers from position of elements in the periodic table.
Q/A: Valencies.
Expose oxidation numbers of common ions.
Students complete a table of ions and their oxidation numbers.
The periodic table.
K.L.B. BOOK IIvP 18
5 3-4
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Electronic configuration, ion formed, valency and oxidation number
Chemical formulae of compounds. - Elements of equal valencies.
By the end of the lesson, the learner should be able to:
Relate electronic configuration, ion formed, valency and oxidation number of different elements.
To derive the formulae of some compounds involving elements of equal valencies.
Written exercise;
Exercise review.
Discuss formation of compounds such as NaCl, MgO.
text book
K.L.B. BOOK IIP 18
K.L.B. BOOK IIPP 19-20
6 1
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Chemical formulae of compounds. -Elements of unequal valencies.
By the end of the lesson, the learner should be able to:
To derive the formulae of some compounds involving elements of unequal valencies.
Discuss formation of compounds such as MgCl2
Al (NO3)3
text book
K.L.B. BOOK IIPP 19-20
6 2
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Chemical formulae of compounds. -Elements of variable valencies.
By the end of the lesson, the learner should be able to:
To derive the formulae of some compounds involving elements of variable valencies.
Discuss formation of compounds such as
-Copper (I) Oxide.
-Copper (II) Oxide.
-Iron (II) Sulphate.
-Iron (III) Sulphate.
text book
K.L.B. BOOK IIP 20
6 3-4
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Chemical equations.
Balanced chemical equations.
By the end of the lesson, the learner should be able to:
To identify components of chemical equations.

To balance chemical equations correctly.
Review word equations;
Exposition of new concepts with probing questions;
Brief discussion.
Exposition;
Supervised practice.
text book
K.L.B. BOOK IIPP 21-23
K.L.B. BOOK IIPP 24-25
7 1
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Balanced chemical equations.(contd)
By the end of the lesson, the learner should be able to:
To balance chemical equations correctly.
Supervised practice;
Written exercise.
text book
K.L.B. BOOK IIPP 25-8
7 2
CHEMICAL FAMILIES
Chemical properties of alkaline earth metals. Reaction of alkaline earth metals with oxygen.
By the end of the lesson, the learner should be able to:
To describe reaction of alkaline earth metals with oxygen
Q/A: Review reactions of Mg, Ca, with oxygen.
The corresponding word and then chemical equations are then written and their correctness verified by the teacher.
text book
K.L.B. BOOK IIP. 38
7 3-4
CHEMICAL FAMILIES
Chemical properties of alkaline earth metals. Reaction of alkaline earth metals with water.
Reaction of alkaline earth metals with chlorine gas.
By the end of the lesson, the learner should be able to:
To describe reaction of alkaline earth metals with water.
To write balanced equations for reaction of alkaline earth metals with chlorine gas.
Q/A: Review reaction of metals with water.
Writing down word and balanced chemical equations for the reactions.
Deduce and discuss the order of reactivity down the group.

Teacher demonstration- Reaction of sodium with chlorine in a fume chamber.
Q/A: Students to predict a similar reaction between potassium and chlorine.
Word and balanced chemical equations for various reactions.
Supervised practice.
Some alkaline earth metals.

Sodium, chlorine.
K.L.B. BOOK IIP. 39
K.L.B. BOOK II P. 41
8 1
CHEMICAL FAMILIES
Reaction of alkaline earth metals with dilute acids.
By the end of the lesson, the learner should be able to:
To write balanced equations for reactions of alkaline earth metals with dilute acids.
Changing word to chemical equations.
Supervised practice.
revision book
K.L.B. BOOK II PP. 43
8 2
CHEMICAL FAMILIES
Chemical formulae of alkaline earth metals.
By the end of the lesson, the learner should be able to:
Write chemical formulae for compounds of alkaline earth metals.
Explain formation of hydroxides, oxides and chlorides of alkaline earth metals.
Exercise: Completing a table of hydroxides, oxides and chlorides of alkaline earth metals.
Discuss combination of ions of alkaline earth metals with anions.
text book
K.L.B. BOOK II PP. 45-47
8 3-4
CHEMICAL FAMILIES
Uses of some alkaline earth metals and their compounds.
Halogens. Physical properties of halogens.
Comparative physical properties of halogens.
Chemical properties of halogens.
By the end of the lesson, the learner should be able to:
State uses of alkaline earth metals.
To state and explain the trends in physical properties of halogens.
Descriptive approach: Teacher elucidates uses of alkaline earth metals.
Examine a comparative table of physical properties of halogens.
Discuss the deductions made from the table.
text book
Iodine crystals, electrical wire, a bulb.
text book
Chlorine, iron wool, bromine.
K.L.B. BOOK II PP. 45-47
K.L.B. BOOK II P. 47
9 1
CHEMICAL FAMILIES
Equations of reaction of halogens with metals.
By the end of the lesson, the learner should be able to:
To write balanced chemical equations of reactions involving halogens.
Re-write word equations as chemical equations then balance them.
Supervised practice.
text book
K.L.B. BOOK II P. 50
9-10

Midterm

10 3-4
CHEMICAL FAMILIES
Reaction of halogens with water.
Some uses of halogens and their compounds.
Noble Gases. Comparative physical properties of noble gases.
By the end of the lesson, the learner should be able to:
To describe reaction of halogens with water and the results obtained.
To state uses of halogens and their compounds.
Bubbling chlorine gas through water.
Carry out litmus test for the water.
Explain the observations.

Teacher elucidates uses of halogens and their compounds.
Chlorine gas, litmus papers.
text book
K.L.B. BOOK II P. 51
K.L.B. BOOK II pp 52
11 1
CHEMICAL FAMILIES
STRUCTURE & BONDING
STRUCTURE & BONDING
Uses of noble gases.
Chemical bonds. Ionic bond.
Ionic bond representation.
By the end of the lesson, the learner should be able to:
State uses of noble gases.
Teacher elucidates uses of noble gases.
text book
Chart- dot and cross diagrams.
Models for bonding.
K.L.B. BOOK IIP. 54
11 2
STRUCTURE & BONDING
Grant ionic structures.
Physical properties of ionic compounds.
Covalent bond.
By the end of the lesson, the learner should be able to:
Describe the crystalline ionic compound.
Give examples of ionic substances.
Discuss the group ionic structures of NaCl.
Teacher gives examples of other ionic substances: KNO3, potassium bromide, Ca (NO3)2, sodium iodide.
Giant sodium chloride model.
text book
K.L.B. BOOK II PP 56-58
11 3-4
STRUCTURE & BONDING
Co-ordinate bond.
Molecular structure.
Trend in physical properties of molecular structures.
Giant atomic structure in diamond.
By the end of the lesson, the learner should be able to:
To describe the co-ordinate bond
To represent co-ordinate bond diagrammatically.
To describe van- der -waals forces.
To explain the trend in physical properties of molecular structures.
Exposition- teacher explains the nature of co-ordinate bond.
Students represent co-ordinate bond diagrammatically.
Discuss comparative physical properties of substances. exhibiting molecular structure.
Explain variation in the physical properties.
text book
Sugar, naphthalene, iodine rhombic sulphur.
Diagrams in textbooks.
K.L.B. BOOK II P 65
K.L.B. BOOK IIP 65
12 1
STRUCTURE & BONDING
Giant atomic structure in graphite.
Metallic bond. Uses of some metals.
By the end of the lesson, the learner should be able to:
To describe giant atomic structure in graphite.
To state uses of graphite.
Diagrammatic representation of graphite.

Discuss uses of graphite.
Diagrams in textbooks.
text book
K.L.B. BOOK II pp 69
12 2
PROPERTIES AND TRENDS ACROSS PERIOD THREE
Physical properties of elements in periods.
Physical properties of elements in period 3.
By the end of the lesson, the learner should be able to:




To compare electrical conductivity of elements in period 3
Group experiments- Construct electrical circuits incorporating a magnesium ribbon, then aluminum foil, then sulphur in turns.
The brightness of the bulb is noted in each case.
Discuss the observations in terms of delocalised electrons.
The periodic table.
K.L.B. BOOK IIP. 76
12 3-4
PROPERTIES AND TRENDS ACROSS PERIOD THREE
Chemical properties of elements in period 3.
Chemical properties of elements in the third period.
Oxides of period 3 elements.
Chlorides of period 3 elements.
By the end of the lesson, the learner should be able to:
To compare reactions of elements in period 3 with oxygen.
To identify bonds across elements in period 3.
To explain chemical behavior of their oxide.
Q/A: Products of reactions of Na, Mg, Al, P, & S with oxygen.
Discuss the trend in their reactivity; identify basic and acidic oxides.
Exercise ? balanced chemical equations for the above reactions.

Comparative analysis, discussion and explanation.
The periodic table.
K.L.B. BOOK II PP. 79-80
K.L.B. BOOK II P. 84

Your Name Comes Here


Download

Feedback