If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 |
Reporting |
|||||||
2 | 1 |
Trigonometry
|
Pythagoras Theorem
|
By the end of the
lesson, the learner
should be able to:
Derive Pythagoras Theorem |
Deriving Pythagoras Theorem
|
Chalkboard Charts Illustrating derived theorem
|
KLB BK2 Pg 120 Discovering secondary pg 67
|
|
2 | 2-3 |
Trigonometry
|
Solutions of problems Using Pythagoras Theorem
Application to real life Situation Trigonometry Tangent, sine and cosines Trigonometric Table |
By the end of the
lesson, the learner
should be able to:
Solve problems using Pythagoras Theorem Define tangent, sine and cosine ratios from a right angles triangle |
Solving problems using Pythagoras theorem
Defining what a tangent, Cosine and sine are using a right angled triangle |
Charts illustrating Pythagoras theorem
Mathematical table Charts illustrating tangent, sine and cosine Mathematical table |
KLB BK2 Pg 121 Discovering secondary pg 67
KLB BK2 Pg 123,132,133 Discovering secondary pg 70 |
|
2 | 4 |
Trigonometry
|
Angles and sides of a right angled triangle
Establishing Relationship of sine and cosine of complimentary angles |
By the end of the
lesson, the learner
should be able to:
Use the sine, cosine and tangent in calculating the length of a right angled triangle and also finding the angle given two sides and unknown angle The length can be obtained if one side is given and an angle |
Using mathematical tables Finding the length using sine ratio Finding the length using Cosine and tangent ratio Finding the angle using Sine, cosine and tangent
|
Mathematical table Charts Chalkboard
Chalkboards |
KLB BK2 Pg 125, 139, 140 Discovering secondary pg
|
|
2 | 5 |
Trigonometry
|
Sines and cosines of Complimentary angles
Relationship between tangent, sine and cosine Trigonometric ratios of special angles 30, 45, 60 and 90 |
By the end of the
lesson, the learner
should be able to:
Use the relationship of sine and cosine of complimentary angles in solving problems |
Solving problems involving the sines and cosines of complimentary angles
|
Chalkboard Charts illustrating the relationship of sines and cosines of complimentary angles
Charts showing the three related trigonometric ratio Charts showing isosceles right angled triangle Charts illustrating Equilateral triangle |
KLB BK2 Pg 145
|
|
2 | 6 |
Trigonometry
|
Application of Trigonometric ratios in solving problems
Logarithms of Sines |
By the end of the
lesson, the learner
should be able to:
Solve trigonometric problems without using tables |
Solving trigonometric problems of special angles
|
Chalkboard
Chalkboard Mathematical tables |
KLB BK2 Pg 148
|
|
3 | 1 |
Trigonometry
|
Logarithms of cosines And tangents
Reading tables of logarithms of sines, cosines and tangents |
By the end of the
lesson, the learner
should be able to:
Read the logarithm of cosines and tangents from mathematical tables |
Reading logarithms of cosine and tangent from mathematical table
|
Chalkboard Mathematical table
|
KLB BK2 Pg 150-152
|
|
3 | 2-3 |
Trigonometry
|
Application of trigonometry to real life situations
Area of a triangle Area of a triangle given the base and height (A = ? bh) Area of a triangle using the formula (A = ? absin?) Area of a triangle using the formula A = ?s(s-a)(s-b)(s-c) Area of Quadrilateral and Polygons Area of a square, rectangle, rhombus, parallelogram and trapezium |
By the end of the
lesson, the learner
should be able to:
Solve problems in real life using trigonometry Solve problems on the area of a triangle Given three sizes using the formula A = ?s(s-a)(s-b)(s-c) |
Solving problems using trigonometry in real life
Solving problems on the area of triangle given three sides of a triangle |
Mathematical table
Chart illustrating worked problem Chalkboard Charts illustrating a triangle with two sides and an included angle Charts showing derived formula Charts illustrating a triangle with three sides Charts illustrating a worked example i.e. mathematical table Charts illustrating formula used in calculating the areas of the quadrilateral |
KLB BK2 Pg 153-154
KLB BK2 Pg 157-158 |
|
3 | 4 |
Trigonometry
|
Area of a kite
Area of other polygons (regular polygon) e.g. Pentagon |
By the end of the
lesson, the learner
should be able to:
Find the area of a kite |
Calculating the area of a Kite
|
Model of a kite
Mathematical table Charts illustrating Polygons |
KLB BK2 Pg 163
|
|
3 | 5 |
Trigonometry
|
Area of irregular Polygon
Area of part of a circle Area of a sector (minor sector and a major sector) |
By the end of the
lesson, the learner
should be able to:
Find the area of irregular polygons |
Finding the area of irregular polygons
|
Charts illustrating various irregular polygons Polygonal shapes
Charts illustrating sectors |
KLB BK2 Pg 166
|
|
3 | 6 |
Trigonometry
|
Defining a segment of a circle Finding the area of a segment of a circle
Area of a common region between two circles given the angles and the radii Area of a common region between two circles given only the radii of the two circles and a common chord |
By the end of the
lesson, the learner
should be able to:
- Define what a segment of a circle is - Find the area of a segment of a circle |
Finding the area of a segment by first finding the area of a sector less the area of a smaller sector given R and r and angle ?
|
Chart illustrating a Segment
Charts illustrating common region between the circles Use of a mathematical table during calculation Charts illustrating common region between two intersecting circles |
KLB BK2 Pg 169-170
|
|
4 | 1 |
Trigonometry
|
Surface area of solids Surface area of prisms Cylinder (ii) Triangular prism (iii) Hexagonal prism
Area of a square based Pyramid |
By the end of the
lesson, the learner
should be able to:
Define prism and hence be in a position of calculating the surface area of some prisms like cylinder, triangular prism and hexagonal prism |
Defining a prism Calculating the surface area of the prisms
|
Models of cylinder, triangular and hexagonal prisms
Models of a square based pyramid |
KLB BK 2 Pg 177
|
|
4 | 2-3 |
Trigonometry
|
Surface area of a Rectangular based Pyramid
Surface area of a cone using the formula A = ?r2 + ?rl Surface area of a frustrum of a cone and a pyramid Finding the surface area of a sphere |
By the end of the
lesson, the learner
should be able to:
Find the surface area of a rectangular based pyramid Find the surface area of a frustrum of a cone and pyramid |
Finding the surface area of a rectangular based pyramid
Finding the surface area of a frustrum of a cone and a pyramid |
Models of a Rectangular based pyramid
Models of a cone Models of frustrum of a cone and a pyramid Models of a sphere Charts illustrating formula for finding the surface area of a sphere |
KLB BK 2 Pg 179-180
KLB BK 2 Pg 182 |
|
4 | 4 |
Trigonometry
|
Surface area of a Hemispheres
Volume of Solids Volume of prism (triangular based prism) Volume of prism (hexagonal based prism) given the sides and angle |
By the end of the
lesson, the learner
should be able to:
Find the surface area of a hemisphere |
Finding the surface area of a hemisphere
|
Models of a hemisphere
Models of a triangular based prism Models of hexagonal based prism |
KLB BK 2 Pg 184
|
|
4 | 5 |
Trigonometry
|
Volume of a pyramid (square based and rectangular based)
Volume of a cone |
By the end of the
lesson, the learner
should be able to:
Find the volume of a square based pyramid and rectangular based pyramid |
Finding the surface area of the base Applying the formula V=?x base area x height to get the volume of the pyramids (square and rectangular based)
|
Models of square and Rectangular based Pyramids
Model of a cone |
KLB BK 2 Pg 189-190
|
|
4 | 6 |
Trigonometry
|
Volume of a frustrum of a cone
Volume of a frustrum of a pyramid |
By the end of the
lesson, the learner
should be able to:
Find the volume of a frustrum of a cone |
Finding the volume of a full cone before its cutoff Finding the volume of a cut cone then subtracting
|
Models of a frustrum of a cone
Models of frustrum of a pyramid |
KLB BK 2 Pg 192
|
|
5 | 1 |
Trigonometry
|
Volume of a sphere (v = 4/3?r3)
Volume of a Hemisphere {(v = ? (4/3?r3)} Application of area of triangles to real life |
By the end of the
lesson, the learner
should be able to:
Find the volume of sphere given the radius of the sphere |
Finding the volume of a Sphere
|
Model of a sphere Mathematical table
Models of hemisphere Mathematical table Chart illustrating formula used |
KLB BK 2 Pg 195
|
|
5 | 2-3 |
Trigonometric Ratios
|
Tangent of an angle
Using tangents in calculations Application of tangents |
By the end of the
lesson, the learner
should be able to:
name the sides of a right-angled triangle as opposite, adjacent and hypotenuse. Find the tangent of an angle by calculation calculate the size of an angle given two sides and an angle from tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
5 | 4 |
Trigonometric Ratios
|
The sine of an angle
The cosine of an angle |
By the end of the
lesson, the learner
should be able to:
find the sine of an angle by calculations and through tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
5 | 5 |
Trigonometric Ratios
|
Application of sine and cosine
Complementary angles Special angles |
By the end of the
lesson, the learner
should be able to:
apply sines to work out lengths and angles. Apply cosine to work out length and angles |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
5 | 6 |
Trigonometric Ratios
|
Application of Special angles
Logarithms of sines, cosines and tangents |
By the end of the
lesson, the learner
should be able to:
apply the knowledge of special angles to solve problems |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
6 | 1 |
Trigonometric Ratios
|
Relationship between sin, cos and tan
Application to real life situation |
By the end of the
lesson, the learner
should be able to:
relate sin, cos and tan that is tan?=sin? cos? Solve problems using the relationship |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
6 | 2-3 |
Trigonometric Ratios
Area of A Triangle |
Problem solving
Area = Solve problems involving = A =?s(s-a) (s-b) (s-c) Problem solving |
By the end of the
lesson, the learner
should be able to:
solve problems on trigonometry solve problems involving area of triangles using the formula Area = |
Problem solving
Discussions Drawing triangles Measuring lengths/angles Calculating area |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
KLB Maths Bk2 Pg. 155-157 |
|
6 | 4 |
Area of Quadrilaterals
|
Area of parallelogram
Area of Rhombus |
By the end of the
lesson, the learner
should be able to:
find the area of quadrilaterals like trapeziums, parallelogram etc. by dividing the shape of triangles |
Drawing trapeziums/polygons
Measuring lengths/angles Reading mathematical tables Discussions |
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables |
KLB Maths Bk2 Pg. 160
|
|
6 | 5 |
Area of Quadrilaterals
|
Area of trapezium and kite
Area of regular polygons |
By the end of the
lesson, the learner
should be able to:
solve problems on the area of a regular polygon |
Drawing trapeziums/polygons
Measuring lengths/angles Reading mathematical tables Discussions |
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables Mathematical tables Chalkboard illustrations |
KLB Maths Bk2 Pg. 162-163
|
|
6 | 6 |
Area of Quadrilaterals
Area of Part of a Circle Area of Part of a Circle |
Problem solving
Area of a sector Area of a segment |
By the end of the
lesson, the learner
should be able to:
solve problems on area of quadrilaterals and other polygons |
Learners solve problems
|
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables Circles Chart illustrating the area of a sector Chart illustrating the area of a minor segment |
KLB Maths Bk2 Pg. 165-166
|
|
7 | 1 |
Area of Part of a Circle
|
Common region between two circles
Common region between two circles |
By the end of the
lesson, the learner
should be able to:
find the area of the common region between two circles. |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a minor segment |
KLB Maths Bk2 Pg. 167-169
|
|
7 | 2-3 |
Area of Part of a Circle
Surface Area of Solids |
Problem solving
Surface area of prisms Surface area of pyramid Surface area of a cone |
By the end of the
lesson, the learner
should be able to:
solve problems involving the area of part of a circle find the surface area of a pyramid |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions Drawing pyramids Measuring lengths/ angles Opening pyramids to form nets Discussions Calculating area |
Circles
Chart illustrating the area of a minor segment Chalkboard illustrations Prism Chalkboard illustrations Pyramids with square base, rectangular base, triangular base Cone |
KLB Maths Bk2 Pg. 167-169
KLB Maths Bk2 Pg. 178 |
|
7 | 4 |
Surface Area of Solids
|
Surface area of frustrum with circular base
Surface area of frustrum with square base Surface area of frustrum with rectangular base |
By the end of the
lesson, the learner
should be able to:
find the surface area of frustrum with circular base |
Drawing cones/frustums
Making cones/frustums Measuring lengths/ angles Discussions |
Chart illustrating the surface area of a frustrum
Chart illustrating frustrum with a square base Chart illustrating frustrum with a rectangular base |
KLB Maths Bk2 Pg. 181-283
KLBMathematics Bk2 Discovering Secondary Mathematics Bk2 |
|
7 | 5 |
Surface Area of Solids
|
Surface area of spheres
Problem solving |
By the end of the
lesson, the learner
should be able to:
find the surface area of a sphere |
Sketching spheres
Making spheres Measuring diameters/ radii of spheres Discussions |
Chalkboard illustrations
Past paper questions |
KLB Maths Bk2 Pg. 183
|
|
7 | 6 |
Volume of Solids
|
Volume of prism
Volume of pyramid |
By the end of the
lesson, the learner
should be able to:
find the volume of a prism |
Identifying prisms
Identifying the cross-sectional area Drawing/sketching prisms |
Prism
Pyramid |
KLB Maths Bk2 Pg. 186-188
|
|
8 | 1 |
Volume of Solids
|
Volume of a cone
Volume of a sphere |
By the end of the
lesson, the learner
should be able to:
find the volume of a cone |
Making cones/frustums
Opening cones/frustums to form nets |
Cone
Sphere |
KLB Maths Bk2 Pg. 191
|
|
8 | 2-3 |
Volume of Solids
|
Volume of frustrum
Volume of frustrum with a square base Volume of frustrum with a rectangular base Application to real life situation Problem solving |
By the end of the
lesson, the learner
should be able to:
find the volume of a frustrum with a circular base apply the knowledge of volume of solids to real life situations. |
Making cones/frustums
Opening cones/frustums to form nets |
Frustrum with circular base
Frustrum with square base Frustrum with rectangular base Models of pyramids, prism, cones and spheres Past paper questions |
KLB Maths Bk2 Pg. 192-193
KLB Maths Bk2 Pg. 193-194 |
|
8 | 4 |
Quadratic Expressions and Equations
|
Expansion of Algebraic Expressions
Quadratic identities |
By the end of the
lesson, the learner
should be able to:
expand algebraic expressions |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 203
|
|
8 | 5 |
Quadratic Expressions and Equations
|
Application of identities
Factorise the Identities Factorise other quadratic expressions |
By the end of the
lesson, the learner
should be able to:
identify and use the three Algebraic identities |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions Chart illustrating factorization of a quadratic expression |
KLB Maths Bk2 Pg. 204-205
|
|
8 | 6 |
Quadratic Expressions and Equations
|
Factorisation of expressions of the form k2-9y2
Simplification of an expression by factorisation |
By the end of the
lesson, the learner
should be able to:
factorise a difference of two squares |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 205-208
|
|
9 | 1 |
Quadratic Expressions and Equations
|
Solving quadratic equations
The formation of quadratic equations |
By the end of the
lesson, the learner
should be able to:
solve quadratic equations |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 208
|
|
9 | 2-3 |
Quadratic Expressions and Equations
Quadratic Expressions and Equations Linear Inequalities Linear Inequalities |
Formation and solving of quadratic equations from word problems
Solving on quadratic equations Forming quadratic equations from the roots Inequalities symbols Number line |
By the end of the
lesson, the learner
should be able to:
form and solve quadratic equations from word problems form quadratic equations given the roots of the equation |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions Real-life experiences Worked out expressions Number lines Graph papers Square boards Negative and positive numbers Negative and positive numbers |
KLB Maths Bk2 Pg. 208-210
KLB Maths Bk2 Pg. 210 |
|
9 | 4 |
Linear Inequalities
|
Inequalities in one unknown
Graphical representation |
By the end of the
lesson, the learner
should be able to:
solve linear inequalities in one unknown and state the integral values |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers Number lines Graph papers |
KLB Maths Bk2 Pg. 213-224
|
|
9 | 5 |
Linear Inequalities
|
Graphical solutions of simultaneous linear inequalities
|
By the end of the
lesson, the learner
should be able to:
solve the linear inequalities in two unknowns graphically |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers |
KLB Maths Bk2 Pg. 213-224
|
|
9 | 6 |
Linear Inequalities
|
Area of the wanted region
Inequalities from inequality graphs |
By the end of the
lesson, the learner
should be able to:
calculate the area of the wanted region |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers |
KLB Maths Bk2 Pg. 213-224
|
|
10 | 1 |
Linear Inequalities
Linear Motion Linear Motion |
Problem solving.
Displacement, velocity, speed and acceleration Distinguishing terms |
By the end of the
lesson, the learner
should be able to:
solve problems on linear inequalities |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers Stones Pieces of paper |
KLB Maths Bk2 Pg. 213-224
|
|
10 | 2-3 |
Linear Motion
|
Distinguishing velocity and acceleration
Distance time graphs Interpret the velocity time graph Interpreting graphs |
By the end of the
lesson, the learner
should be able to:
determine velocity and acceleration interpret a velocity time graph |
Learners determine velocity and acceleration
Plotting graphs Drawing graphs Learners interpret a velocity time graph |
Graph papers
Stones Pieces of paper Drawn graphs |
KLB Maths Bk2 Pg. 228-238
KLB Maths Bk2 Pg.333 |
|
10 | 4 |
Linear Motion
Statistics |
Relative speed (objects moving in the same direction)
Problem solving Definition |
By the end of the
lesson, the learner
should be able to:
solve problems on objects moving in different directions |
Teacher/pupil discussion
|
Real life situation
Chalkboard illustrations Past paper questions Weighing balance Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB
Maths Bk2 Pg.329 |
|
10 | 5 |
Statistics
|
Collection and organization of data
Frequency tables |
By the end of the
lesson, the learner
should be able to:
collect and organize data |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
10 | 6 |
Statistics
|
Grouped data
Mean of ungrouped data |
By the end of the
lesson, the learner
should be able to:
group data into reasonable classes |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
11 | 1 |
Statistics
|
Median of ungrouped data
Mean of ungrouped data |
By the end of the
lesson, the learner
should be able to:
calculate the median of ungrouped data and state the mode |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
11 | 2-3 |
Statistics
|
Median of a grouped data modal class
Data Representation. Line graphs Bar graphs Pictogram Histograms |
By the end of the
lesson, the learner
should be able to:
state the modal class and calculate the median of a grouped data. represent data in form of pictures |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers Pictures which are whole, half, quarter Weighing balance Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
11 | 4 |
Statistics
|
Frequency polygons
Histograms with uneven distribution |
By the end of the
lesson, the learner
should be able to:
represent data in form of frequency polygons |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Histograms drawn. Data
Data with uneven classes |
KLB Maths Bk2 Pg. 241-252
|
|
11 | 5 |
Statistics
|
Interpretation of data
Problem solving |
By the end of the
lesson, the learner
should be able to:
interpret data from real life situation |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Real life situations
Past paper questions |
KLB Maths Bk2 Pg. 241-252
|
|
11 | 6 |
Angle Properties of a Circle
|
Arc chord segment
Angles subtended by the same arc in the same segment Angle at the centre and at the circumference |
By the end of the
lesson, the learner
should be able to:
identify an arc, chord and segment |
Discussions
Drawing circles Measuring radii/ diameters/angles Identifying the parts of a circle |
Chart illustrating arc chord and segment
Chart illustrating Angles subtended by the same arc in same segment are equal Chart illustrating Angles subtended at the centre by an arc and one subtended at the circumference |
KLB Maths Bk2 Pg. 264-278
|
|
12 | 1 |
Angle Properties of a Circle
|
Angles subtended by the diameter at the circumference
Cyclic quadrilateral |
By the end of the
lesson, the learner
should be able to:
state the angle in the semi-circle |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Circles showing the
different parts |
KLB Maths Bk2 Pg. 264-278
|
|
12 | 2-3 |
Angle Properties of a Circle
Angle Properties of a Circle Vectors |
Cyclic quadrilateral
Exterior angle property Problem solving Problem solving Definition and Representation of vectors |
By the end of the
lesson, the learner
should be able to:
find and compute angles of a cyclic quadrilateral solve problems on angle properties of a circle |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Circles showing the
different parts Circles showing the different parts Past paper questions different parts Past paper questions 1x2 matrices Graph papers Square boards Ruler |
KLB Maths Bk2 Pg. 264-278
|
|
12 | 4 |
Vectors
|
Equivalent vectors
Addition of vectors |
By the end of the
lesson, the learner
should be able to:
identify equivalent vectors |
Writing position vectors
Adding/subtracting numbers Squaring and getting the square root of numbers |
1x2 matrices
Graph papers Square boards Ruler |
KLB Maths Bk2 Pg. 285
|
|
12 | 5 |
Vectors
|
Multiplication of vectors
Position vectors |
By the end of the
lesson, the learner
should be able to:
multiply a vector and a scalar |
Writing position vectors
Adding/subtracting numbers Squaring and getting the square root of numbers |
1x2 matrices
Graph papers Square boards Ruler |
KLB Maths Bk2 Pg. 290
|
|
12 | 6 |
Vectors
|
Column vector
Magnitude of a vector Mid - point Translation vector |
By the end of the
lesson, the learner
should be able to:
write a vector as a column vector |
Writing position vectors
Adding/subtracting numbers Squaring and getting the square root of numbers |
1x2 matrices
Graph papers Square boards Ruler |
KLB Maths Bk2 Pg. 296-297
|
Your Name Comes Here