If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1-2 |
OPENING AND EXAMINATION |
|||||||
3 | 1 |
Trigonometry
|
Pythagoras Theorem
|
By the end of the
lesson, the learner
should be able to:
Derive Pythagoras Theorem |
Deriving Pythagoras Theorem
|
Chalkboard Charts Illustrating derived theorem
|
KLB BK2 Pg 120 Discovering secondary pg 67
|
|
3 | 2 |
Trigonometry
|
Solutions of problems Using Pythagoras Theorem
Application to real life Situation |
By the end of the
lesson, the learner
should be able to:
Solve problems using Pythagoras Theorem |
Solving problems using Pythagoras theorem
|
Charts illustrating Pythagoras theorem
Mathematical table |
KLB BK2 Pg 121 Discovering secondary pg 67
|
|
3 | 3 |
Trigonometry
|
Trigonometry Tangent, sine and cosines
Trigonometric Table |
By the end of the
lesson, the learner
should be able to:
Define tangent, sine and cosine ratios from a right angles triangle |
Defining what a tangent, Cosine and sine are using a right angled triangle
|
Charts illustrating tangent, sine and cosine
Mathematical table |
KLB BK2 Pg 123,132,133 Discovering secondary pg 70
|
|
3 | 4 |
Trigonometry
|
Angles and sides of a right angled triangle
Establishing Relationship of sine and cosine of complimentary angles |
By the end of the
lesson, the learner
should be able to:
Use the sine, cosine and tangent in calculating the length of a right angled triangle and also finding the angle given two sides and unknown angle The length can be obtained if one side is given and an angle |
Using mathematical tables Finding the length using sine ratio Finding the length using Cosine and tangent ratio Finding the angle using Sine, cosine and tangent
|
Mathematical table Charts Chalkboard
Chalkboards |
KLB BK2 Pg 125, 139, 140 Discovering secondary pg
|
|
3 | 5 |
Trigonometry
|
Sines and cosines of Complimentary angles
Relationship between tangent, sine and cosine |
By the end of the
lesson, the learner
should be able to:
Use the relationship of sine and cosine of complimentary angles in solving problems |
Solving problems involving the sines and cosines of complimentary angles
|
Chalkboard Charts illustrating the relationship of sines and cosines of complimentary angles
Charts showing the three related trigonometric ratio |
KLB BK2 Pg 145
|
|
4 | 1 |
Trigonometry
|
Trigonometric ratios of special angles 30, 45, 60 and 90
Application of Trigonometric ratios in solving problems Logarithms of Sines |
By the end of the
lesson, the learner
should be able to:
Determine the trigonometric ratios of special angles without using tables |
Determining the trigonometric ratios of special angles 30,45,60 and 90 without using tables
|
Charts showing isosceles right angled triangle Charts illustrating Equilateral triangle
Chalkboard Chalkboard Mathematical tables |
KLB BK2 Pg 146-147
|
|
4 | 2 |
Trigonometry
|
Logarithms of cosines And tangents
Reading tables of logarithms of sines, cosines and tangents |
By the end of the
lesson, the learner
should be able to:
Read the logarithm of cosines and tangents from mathematical tables |
Reading logarithms of cosine and tangent from mathematical table
|
Chalkboard Mathematical table
|
KLB BK2 Pg 150-152
|
|
4 | 3 |
Trigonometry
|
Application of trigonometry to real life situations
Area of a triangle Area of a triangle given the base and height (A = ? bh) |
By the end of the
lesson, the learner
should be able to:
Solve problems in real life using trigonometry |
Solving problems using trigonometry in real life
|
Mathematical table
Chart illustrating worked problem Chalkboard |
KLB BK2 Pg 153-154
|
|
4 | 4 |
Trigonometry
|
Area of a triangle using the formula (A = ? absin?)
Area of a triangle using the formula A = ?s(s-a)(s-b)(s-c) |
By the end of the
lesson, the learner
should be able to:
- Derive the formula ? absinc - Using the formula derived in calculating the area of a triangle given two sides and an included angle |
Deriving the formula ? absinc Using the formula to calculate the area of a triangle given two sides and an included angle
|
Charts illustrating a triangle with two sides and an included angle Charts showing derived formula
Charts illustrating a triangle with three sides Charts illustrating a worked example i.e. mathematical table |
KLB BK2 Pg 156
|
|
4 | 5 |
Trigonometry
|
Area of Quadrilateral and Polygons Area of a square, rectangle, rhombus, parallelogram and trapezium
Area of a kite |
By the end of the
lesson, the learner
should be able to:
Calculate the are of a triangle, square, rectangle, rhombus, parallelogram and trapezium |
Calculating the area of a triangle, square, rectangle, rhombus, parallelogram and trapezium
|
Charts illustrating formula used in calculating the areas of the quadrilateral
Model of a kite |
KLB BK2 Pg 161-163
|
|
5 | 1 |
Trigonometry
|
Area of other polygons (regular polygon) e.g. Pentagon
Area of irregular Polygon Area of part of a circle Area of a sector (minor sector and a major sector) |
By the end of the
lesson, the learner
should be able to:
Find the area of a regular polygon |
Calculating the area of a regular polygon
|
Mathematical table Charts illustrating Polygons
Charts illustrating various irregular polygons Polygonal shapes Charts illustrating sectors |
KLB BK2 Pg 164
|
|
5 | 2 |
Trigonometry
|
Defining a segment of a circle Finding the area of a segment of a circle
Area of a common region between two circles given the angles and the radii |
By the end of the
lesson, the learner
should be able to:
- Define what a segment of a circle is - Find the area of a segment of a circle |
Finding the area of a segment by first finding the area of a sector less the area of a smaller sector given R and r and angle ?
|
Chart illustrating a Segment
Charts illustrating common region between the circles Use of a mathematical table during calculation |
KLB BK2 Pg 169-170
|
|
5 | 3 |
Trigonometry
|
Area of a common region between two circles given only the radii of the two circles and a common chord
Surface area of solids Surface area of prisms Cylinder (ii) Triangular prism (iii) Hexagonal prism |
By the end of the
lesson, the learner
should be able to:
Calculate the area of common region between two circle given the radii of the two intersecting circles and the length of a common chord of the two circles |
Finding the area of a common region between two intersecting
|
Charts illustrating common region between two intersecting circles
Models of cylinder, triangular and hexagonal prisms |
KLB BK 2 Pg 176
|
|
5 | 4 |
Trigonometry
|
Area of a square based Pyramid
Surface area of a Rectangular based Pyramid |
By the end of the
lesson, the learner
should be able to:
Find the total surface area of a square based pyramid |
Finding the surface area of a square based pyramid
|
Models of a square based pyramid
Models of a Rectangular based pyramid |
KLB BK 2 Pg 178
|
|
5 | 5 |
Trigonometry
|
Surface area of a cone using the formula A = ?r2 + ?rl
Surface area of a frustrum of a cone and a pyramid |
By the end of the
lesson, the learner
should be able to:
Find the total surface area of the cone by first finding the area of the circular base and then the area of the curved surface |
Finding the area of the circular part Finding the area of the curved part Getting the total surface Area
|
Models of a cone
Models of frustrum of a cone and a pyramid |
KLB BK 2 Pg 181
|
|
6 | 1 |
Trigonometry
|
Finding the surface area of a sphere
Surface area of a Hemispheres Volume of Solids Volume of prism (triangular based prism) |
By the end of the
lesson, the learner
should be able to:
Find the surface area of a sphere given the radius of a sphere |
Finding the surface area of a sphere
|
Models of a sphere Charts illustrating formula for finding the surface area of a sphere
Models of a hemisphere Models of a triangular based prism |
KLB BK 2 Pg 183
|
|
6 | 2 |
Trigonometry
|
Volume of prism (hexagonal based prism) given the sides and angle
Volume of a pyramid (square based and rectangular based) |
By the end of the
lesson, the learner
should be able to:
Find the volume of a hexagonal based prism |
Calculating the volume of an hexagonal prism
|
Models of hexagonal based prism
Models of square and Rectangular based Pyramids |
KLB BK 2 Pg 187
|
|
6 | 3 |
Trigonometry
|
Volume of a cone
Volume of a frustrum of a cone |
By the end of the
lesson, the learner
should be able to:
Find the volume of a cone |
Finding the volume of a cone
|
Model of a cone
Models of a frustrum of a cone |
KLB BK 2 Pg 191
|
|
6 | 4 |
Trigonometry
|
Volume of a frustrum of a pyramid
Volume of a sphere (v = 4/3?r3) |
By the end of the
lesson, the learner
should be able to:
Find the volume of a frustrum of a Pyramid |
Finding volume of a full pyramid Finding volume of cutoff pyramid Find volume of the remaining fig (frustrum) by subtracting i.e. Vf = (V ? v)
|
Models of frustrum of a pyramid
Model of a sphere Mathematical table |
KLB BK 2 Pg 194
|
|
6 | 5 |
Trigonometry
|
Volume of a Hemisphere {(v = ? (4/3?r3)}
Application of area of triangles to real life |
By the end of the
lesson, the learner
should be able to:
Find the volume of a hemisphere |
Working out the volume of a hemisphere
|
Models of hemisphere
Mathematical table Chart illustrating formula used |
Macmillan BK 2 Pg 173
|
|
7 | 1 |
Trigonometric Ratios
|
Tangent of an angle
Using tangents in calculations |
By the end of the
lesson, the learner
should be able to:
name the sides of a right-angled triangle as opposite, adjacent and hypotenuse. Find the tangent of an angle by calculation |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
7 | 2 |
Trigonometric Ratios
|
Application of tangents
The sine of an angle |
By the end of the
lesson, the learner
should be able to:
work out further problems using tangents |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
7 | 3 |
Trigonometric Ratios
|
The cosine of an angle
Application of sine and cosine |
By the end of the
lesson, the learner
should be able to:
find the cosine of an angle by calculations and through tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
7 | 4 |
Trigonometric Ratios
|
Complementary angles
Special angles |
By the end of the
lesson, the learner
should be able to:
define complementary angles. Work out sines of an angle given the cosine of its complimentary and vice versa |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
7 | 5 |
Trigonometric Ratios
|
Application of Special angles
Logarithms of sines, cosines and tangents |
By the end of the
lesson, the learner
should be able to:
apply the knowledge of special angles to solve problems |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
8 | 1 |
Trigonometric Ratios
|
Relationship between sin, cos and tan
Application to real life situation Problem solving |
By the end of the
lesson, the learner
should be able to:
relate sin, cos and tan that is tan?=sin? cos? Solve problems using the relationship |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
8 | 2 |
Area of A Triangle
|
Area =
Solve problems involving = |
By the end of the
lesson, the learner
should be able to:
derive the formula Area = |
Discussions
Drawing triangles Measuring lengths/angles Calculating area |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 155-157
|
|
8 | 3 |
Area of A Triangle
|
A =?s(s-a) (s-b) (s-c)
Problem solving |
By the end of the
lesson, the learner
should be able to:
find the area of a triangle given the three sides |
Discussions
Drawing triangles Measuring lengths/angles Calculating area |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 155-157
|
|
8 | 4 |
Area of Quadrilaterals
|
Area of parallelogram
Area of Rhombus |
By the end of the
lesson, the learner
should be able to:
find the area of quadrilaterals like trapeziums, parallelogram etc. by dividing the shape of triangles |
Drawing trapeziums/polygons
Measuring lengths/angles Reading mathematical tables Discussions |
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables |
KLB Maths Bk2 Pg. 160
|
|
8 | 5 |
Area of Quadrilaterals
|
Area of trapezium and kite
Area of regular polygons |
By the end of the
lesson, the learner
should be able to:
solve problems on the area of a regular polygon |
Drawing trapeziums/polygons
Measuring lengths/angles Reading mathematical tables Discussions |
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables Mathematical tables Chalkboard illustrations |
KLB Maths Bk2 Pg. 162-163
|
|
9 |
MID TERM BREAK |
|||||||
10 | 1 |
Area of Quadrilaterals
Area of Part of a Circle Area of Part of a Circle |
Problem solving
Area of a sector Area of a segment |
By the end of the
lesson, the learner
should be able to:
solve problems on area of quadrilaterals and other polygons |
Learners solve problems
|
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables Circles Chart illustrating the area of a sector Chart illustrating the area of a minor segment |
KLB Maths Bk2 Pg. 165-166
|
|
10 | 2 |
Area of Part of a Circle
|
Common region between two circles
Common region between two circles |
By the end of the
lesson, the learner
should be able to:
find the area of the common region between two circles. |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a minor segment |
KLB Maths Bk2 Pg. 167-169
|
|
10 | 3 |
Area of Part of a Circle
Surface Area of Solids |
Problem solving
Surface area of prisms |
By the end of the
lesson, the learner
should be able to:
solve problems involving the area of part of a circle |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a minor segment Chalkboard illustrations Prism Chalkboard illustrations |
KLB Maths Bk2 Pg. 167-169
|
|
10 | 4 |
Surface Area of Solids
|
Surface area of pyramid
Surface area of a cone |
By the end of the
lesson, the learner
should be able to:
find the surface area of a pyramid |
Drawing pyramids
Measuring lengths/ angles Opening pyramids to form nets Discussions Calculating area |
Pyramids with square base, rectangular base, triangular base
Cone |
KLB Maths Bk2 Pg. 178
|
|
10 | 5 |
Surface Area of Solids
|
Surface area of frustrum with circular base
Surface area of frustrum with square base |
By the end of the
lesson, the learner
should be able to:
find the surface area of frustrum with circular base |
Drawing cones/frustums
Making cones/frustums Measuring lengths/ angles Discussions |
Chart illustrating the surface area of a frustrum
Chart illustrating frustrum with a square base |
KLB Maths Bk2 Pg. 181-283
KLBMathematics Bk2 Discovering Secondary Mathematics Bk2 |
|
11 | 1 |
Surface Area of Solids
|
Surface area of frustrum with rectangular base
Surface area of spheres Problem solving |
By the end of the
lesson, the learner
should be able to:
find the surface area of frustrum with rectangular base |
Drawing cones/frustums
Making cones/frustums Measuring lengths/ angles Discussions |
Chart illustrating frustrum with a rectangular base
Chalkboard illustrations Past paper questions |
KLB Maths Bk2 Pg. 181-183
|
|
11 | 2 |
Volume of Solids
|
Volume of prism
Volume of pyramid |
By the end of the
lesson, the learner
should be able to:
find the volume of a prism |
Identifying prisms
Identifying the cross-sectional area Drawing/sketching prisms |
Prism
Pyramid |
KLB Maths Bk2 Pg. 186-188
|
|
11 | 3 |
Volume of Solids
|
Volume of a cone
Volume of a sphere |
By the end of the
lesson, the learner
should be able to:
find the volume of a cone |
Making cones/frustums
Opening cones/frustums to form nets |
Cone
Sphere |
KLB Maths Bk2 Pg. 191
|
|
11 | 4 |
Volume of Solids
|
Volume of frustrum
Volume of frustrum with a square base |
By the end of the
lesson, the learner
should be able to:
find the volume of a frustrum with a circular base |
Making cones/frustums
Opening cones/frustums to form nets |
Frustrum with circular base
Frustrum with square base |
KLB Maths Bk2 Pg. 192-193
|
|
11 | 5 |
Volume of Solids
|
Volume of frustrum with a rectangular base
Application to real life situation |
By the end of the
lesson, the learner
should be able to:
find the volume of a frustrum with a rectangular base |
Making cones/frustums
Opening cones/frustums to form nets |
Frustrum with rectangular base
Models of pyramids, prism, cones and spheres |
KLB Maths Bk2 Pg. 192-193
|
|
12 | 1 |
Volume of Solids
Quadratic Expressions and Equations Quadratic Expressions and Equations |
Problem solving
Expansion of Algebraic Expressions Quadratic identities |
By the end of the
lesson, the learner
should be able to:
solve problems on volume of solids |
Making cones/frustums
Opening cones/frustums to form nets |
Past paper questions
Real-life experiences Worked out expressions |
KLB Maths Bk2 Pg. 196
|
|
12 | 2 |
Quadratic Expressions and Equations
|
Application of identities
Factorise the Identities |
By the end of the
lesson, the learner
should be able to:
identify and use the three Algebraic identities |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 204-205
|
|
12 | 3 |
Quadratic Expressions and Equations
|
Factorise other quadratic expressions
Factorisation of expressions of the form k2-9y2 |
By the end of the
lesson, the learner
should be able to:
factorise quadratic expressions |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Chart illustrating factorization of a quadratic expression
Real-life experiences Worked out expressions |
KLB Maths Bk2 Pg. 119-122
|
|
12 | 4 |
Quadratic Expressions and Equations
|
Simplification of an expression by factorisation
Solving quadratic equations |
By the end of the
lesson, the learner
should be able to:
simplify a quadratic expression by factorisation |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 205-208
|
|
12 | 5 |
Quadratic Expressions and Equations
|
The formation of quadratic equations
Formation and solving of quadratic equations from word problems Solving on quadratic equations Forming quadratic equations from the roots |
By the end of the
lesson, the learner
should be able to:
form quadratic equations from information |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 208
|
|
13 |
END TERM EXAMINATION |
|||||||
14 |
GRADUATION AND CLOSING |
Your Name Comes Here