If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 6 |
Trigonometry
|
Pythagoras Theorem
|
By the end of the
lesson, the learner
should be able to:
Derive Pythagoras Theorem |
Deriving Pythagoras Theorem
|
Chalkboard Charts Illustrating derived theorem
|
KLB BK2 Pg 120 Discovering secondary pg 67
|
|
3 | 1 |
Trigonometry
|
Solutions of problems Using Pythagoras Theorem
Application to real life Situation Trigonometry Tangent, sine and cosines |
By the end of the
lesson, the learner
should be able to:
Solve problems using Pythagoras Theorem |
Solving problems using Pythagoras theorem
|
Charts illustrating Pythagoras theorem
Mathematical table Charts illustrating tangent, sine and cosine |
KLB BK2 Pg 121 Discovering secondary pg 67
|
|
3 | 2 |
Trigonometry
|
Trigonometric Table
Angles and sides of a right angled triangle |
By the end of the
lesson, the learner
should be able to:
Use trigonometric tables to find the sine, cosine and tangent |
Reading trigonometric tables of sines, cosines and tangent
|
Mathematical table
Mathematical table Charts Chalkboard |
KLB BK2 Pg 127, 138, 139 Discovering secondary pg 71
|
|
3 | 3 |
Trigonometry
|
Establishing Relationship of sine and cosine of complimentary angles
Sines and cosines of Complimentary angles Relationship between tangent, sine and cosine |
By the end of the
lesson, the learner
should be able to:
Establish the relationship of sine and cosine of complimentary angles |
Using established relationship to solve problems
|
Chalkboards
Chalkboard Charts illustrating the relationship of sines and cosines of complimentary angles Charts showing the three related trigonometric ratio |
KLB BK2 Pg 145
|
|
3 | 4 |
Trigonometry
|
Trigonometric ratios of special angles 30, 45, 60 and 90
Application of Trigonometric ratios in solving problems Logarithms of Sines |
By the end of the
lesson, the learner
should be able to:
Determine the trigonometric ratios of special angles without using tables |
Determining the trigonometric ratios of special angles 30,45,60 and 90 without using tables
|
Charts showing isosceles right angled triangle Charts illustrating Equilateral triangle
Chalkboard Chalkboard Mathematical tables |
KLB BK2 Pg 146-147
|
|
3 | 5 |
Trigonometry
|
Logarithms of cosines And tangents
Reading tables of logarithms of sines, cosines and tangents |
By the end of the
lesson, the learner
should be able to:
Read the logarithm of cosines and tangents from mathematical tables |
Reading logarithms of cosine and tangent from mathematical table
|
Chalkboard Mathematical table
|
KLB BK2 Pg 150-152
|
|
3 | 6 |
Trigonometry
|
Application of trigonometry to real life situations
Area of a triangle Area of a triangle given the base and height (A = ? bh) Area of a triangle using the formula (A = ? absin?) |
By the end of the
lesson, the learner
should be able to:
Solve problems in real life using trigonometry |
Solving problems using trigonometry in real life
|
Mathematical table
Chart illustrating worked problem Chalkboard Charts illustrating a triangle with two sides and an included angle Charts showing derived formula |
KLB BK2 Pg 153-154
|
|
4 | 1 |
Trigonometry
|
Area of a triangle using the formula A = ?s(s-a)(s-b)(s-c)
Area of Quadrilateral and Polygons Area of a square, rectangle, rhombus, parallelogram and trapezium Area of a kite |
By the end of the
lesson, the learner
should be able to:
Solve problems on the area of a triangle Given three sizes using the formula A = ?s(s-a)(s-b)(s-c) |
Solving problems on the area of triangle given three sides of a triangle
|
Charts illustrating a triangle with three sides Charts illustrating a worked example i.e. mathematical table
Charts illustrating formula used in calculating the areas of the quadrilateral Model of a kite |
KLB BK2 Pg 157-158
|
|
4 | 2 |
Trigonometry
|
Area of other polygons (regular polygon) e.g. Pentagon
Area of irregular Polygon Area of part of a circle Area of a sector (minor sector and a major sector) |
By the end of the
lesson, the learner
should be able to:
Find the area of a regular polygon |
Calculating the area of a regular polygon
|
Mathematical table Charts illustrating Polygons
Charts illustrating various irregular polygons Polygonal shapes Charts illustrating sectors |
KLB BK2 Pg 164
|
|
4 | 3 |
Trigonometry
|
Defining a segment of a circle Finding the area of a segment of a circle
Area of a common region between two circles given the angles and the radii |
By the end of the
lesson, the learner
should be able to:
- Define what a segment of a circle is - Find the area of a segment of a circle |
Finding the area of a segment by first finding the area of a sector less the area of a smaller sector given R and r and angle ?
|
Chart illustrating a Segment
Charts illustrating common region between the circles Use of a mathematical table during calculation |
KLB BK2 Pg 169-170
|
|
4 | 4 |
Trigonometry
|
Area of a common region between two circles given only the radii of the two circles and a common chord
Surface area of solids Surface area of prisms Cylinder (ii) Triangular prism (iii) Hexagonal prism Area of a square based Pyramid |
By the end of the
lesson, the learner
should be able to:
Calculate the area of common region between two circle given the radii of the two intersecting circles and the length of a common chord of the two circles |
Finding the area of a common region between two intersecting
|
Charts illustrating common region between two intersecting circles
Models of cylinder, triangular and hexagonal prisms Models of a square based pyramid |
KLB BK 2 Pg 176
|
|
4 | 5 |
Trigonometry
|
Surface area of a Rectangular based Pyramid
Surface area of a cone using the formula A = ?r2 + ?rl Surface area of a frustrum of a cone and a pyramid |
By the end of the
lesson, the learner
should be able to:
Find the surface area of a rectangular based pyramid |
Finding the surface area of a rectangular based pyramid
|
Models of a Rectangular based pyramid
Models of a cone Models of frustrum of a cone and a pyramid |
KLB BK 2 Pg 179-180
|
|
4 | 6 |
Trigonometry
|
Finding the surface area of a sphere
Surface area of a Hemispheres Volume of Solids Volume of prism (triangular based prism) |
By the end of the
lesson, the learner
should be able to:
Find the surface area of a sphere given the radius of a sphere |
Finding the surface area of a sphere
|
Models of a sphere Charts illustrating formula for finding the surface area of a sphere
Models of a hemisphere Models of a triangular based prism |
KLB BK 2 Pg 183
|
|
5 | 1 |
Trigonometry
|
Volume of prism (hexagonal based prism) given the sides and angle
Volume of a pyramid (square based and rectangular based) |
By the end of the
lesson, the learner
should be able to:
Find the volume of a hexagonal based prism |
Calculating the volume of an hexagonal prism
|
Models of hexagonal based prism
Models of square and Rectangular based Pyramids |
KLB BK 2 Pg 187
|
|
5 | 2 |
Trigonometry
|
Volume of a cone
Volume of a frustrum of a cone Volume of a frustrum of a pyramid |
By the end of the
lesson, the learner
should be able to:
Find the volume of a cone |
Finding the volume of a cone
|
Model of a cone
Models of a frustrum of a cone Models of frustrum of a pyramid |
KLB BK 2 Pg 191
|
|
5 | 3 |
Trigonometry
|
Volume of a sphere (v = 4/3?r3)
Volume of a Hemisphere {(v = ? (4/3?r3)} Application of area of triangles to real life |
By the end of the
lesson, the learner
should be able to:
Find the volume of sphere given the radius of the sphere |
Finding the volume of a Sphere
|
Model of a sphere Mathematical table
Models of hemisphere Mathematical table Chart illustrating formula used |
KLB BK 2 Pg 195
|
|
5 | 4 |
Trigonometric Ratios
|
Tangent of an angle
|
By the end of the
lesson, the learner
should be able to:
name the sides of a right-angled triangle as opposite, adjacent and hypotenuse. Find the tangent of an angle by calculation |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
5 | 5 |
Trigonometric Ratios
|
Using tangents in calculations
Application of tangents The sine of an angle |
By the end of the
lesson, the learner
should be able to:
calculate the size of an angle given two sides and an angle from tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
5 | 6 |
Trigonometric Ratios
|
The cosine of an angle
Application of sine and cosine Complementary angles |
By the end of the
lesson, the learner
should be able to:
find the cosine of an angle by calculations and through tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
6 | 1 |
Trigonometric Ratios
|
Special angles
Application of Special angles Logarithms of sines, cosines and tangents |
By the end of the
lesson, the learner
should be able to:
find the sine, cos, and tan of 300,600,450,00,900, without using tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
6 | 2 |
Trigonometric Ratios
|
Relationship between sin, cos and tan
Application to real life situation |
By the end of the
lesson, the learner
should be able to:
relate sin, cos and tan that is tan?=sin? cos? Solve problems using the relationship |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
6 | 3 |
Trigonometric Ratios
Area of A Triangle Area of A Triangle |
Problem solving
Area = Solve problems involving = |
By the end of the
lesson, the learner
should be able to:
solve problems on trigonometry |
Problem solving
|
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
6 | 4 |
Area of A Triangle
Area of Quadrilaterals |
A =?s(s-a) (s-b) (s-c)
Problem solving Area of parallelogram |
By the end of the
lesson, the learner
should be able to:
find the area of a triangle given the three sides |
Discussions
Drawing triangles Measuring lengths/angles Calculating area |
Protractor
Ruler Right corners Mathematical tables Parallelograms Trapeziums Polygons Squares/rectangles |
KLB Maths Bk2 Pg. 155-157
|
|
6 | 5 |
Area of Quadrilaterals
|
Area of Rhombus
Area of trapezium and kite Area of regular polygons |
By the end of the
lesson, the learner
should be able to:
find the area of a regular polygon. |
Drawing trapeziums/polygons
Measuring lengths/angles Reading mathematical tables Discussions |
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables Mathematical tables Chalkboard illustrations |
KLB Maths Bk2 Pg. 161
|
|
6 | 6 |
Area of Quadrilaterals
Area of Part of a Circle |
Problem solving
Area of a sector |
By the end of the
lesson, the learner
should be able to:
solve problems on area of quadrilaterals and other polygons |
Learners solve problems
|
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables Circles Chart illustrating the area of a sector |
KLB Maths Bk2 Pg. 165-166
|
|
7 | 1 |
Area of Part of a Circle
|
Area of a segment
Common region between two circles Common region between two circles |
By the end of the
lesson, the learner
should be able to:
find area of a segment |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a minor segment |
KLB Maths Bk2 Pg. 167-169
|
|
7 | 2 |
Area of Part of a Circle
Surface Area of Solids Surface Area of Solids |
Problem solving
Surface area of prisms Surface area of pyramid |
By the end of the
lesson, the learner
should be able to:
solve problems involving the area of part of a circle |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a minor segment Chalkboard illustrations Prism Chalkboard illustrations Pyramids with square base, rectangular base, triangular base |
KLB Maths Bk2 Pg. 167-169
|
|
7 | 3 |
Surface Area of Solids
|
Surface area of a cone
Surface area of frustrum with circular base |
By the end of the
lesson, the learner
should be able to:
find the surface area of a cone |
Drawing cones/frustums
Making cones/frustums Measuring lengths/ angles Discussions |
Cone
Chart illustrating the surface area of a frustrum |
KLB Maths Bk2 Pg. 180
KLBMathematics Bk2 Discovering Secondary Mathematics Bk2 |
|
7 | 4 |
Surface Area of Solids
|
Surface area of frustrum with square base
Surface area of frustrum with rectangular base Surface area of spheres |
By the end of the
lesson, the learner
should be able to:
find the surface area of frustrum with square base |
Drawing cones/frustums
Making cones/frustums Measuring lengths/ angles Discussions Learners find the surface area |
Chart illustrating frustrum with a square base
Chart illustrating frustrum with a rectangular base Chalkboard illustrations |
KLB Maths Bk2 Pg. 181-183
|
|
7 | 5 |
Surface Area of Solids
Volume of Solids Volume of Solids |
Problem solving
Volume of prism Volume of pyramid |
By the end of the
lesson, the learner
should be able to:
solve problems on surface area of solids |
Learners solve problems
|
Past paper questions
Prism Pyramid |
KLB Maths Bk2 Pg. 183
|
|
7 | 6 |
Volume of Solids
|
Volume of a cone
Volume of a sphere Volume of frustrum |
By the end of the
lesson, the learner
should be able to:
find the volume of a cone |
Making cones/frustums
Opening cones/frustums to form nets |
Cone
Sphere Frustrum with circular base |
KLB Maths Bk2 Pg. 191
|
|
8 | 1 |
Volume of Solids
|
Volume of frustrum with a square base
Volume of frustrum with a rectangular base |
By the end of the
lesson, the learner
should be able to:
find the volume of a frustrum with a square base |
Making cones/frustums
Opening cones/frustums to form nets |
Frustrum with square base
Frustrum with rectangular base |
KLB Maths Bk2 Pg. 192-193
|
|
8 | 2 |
Volume of Solids
Quadratic Expressions and Equations |
Application to real life situation
Problem solving Expansion of Algebraic Expressions |
By the end of the
lesson, the learner
should be able to:
apply the knowledge of volume of solids to real life situations. |
Making cones/frustums
Opening cones/frustums to form nets |
Models of pyramids, prism, cones and spheres
Past paper questions Real-life experiences Worked out expressions |
KLB Maths Bk2 Pg. 193-194
|
|
8 | 3 |
Quadratic Expressions and Equations
|
Quadratic identities
Application of identities Factorise the Identities |
By the end of the
lesson, the learner
should be able to:
derive the three Algebraic identities |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 204-205
|
|
8 | 4 |
Quadratic Expressions and Equations
|
Factorise other quadratic expressions
Factorisation of expressions of the form k2-9y2 Simplification of an expression by factorisation |
By the end of the
lesson, the learner
should be able to:
factorise quadratic expressions |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Chart illustrating factorization of a quadratic expression
Real-life experiences Worked out expressions |
KLB Maths Bk2 Pg. 119-122
|
|
8 | 5 |
Quadratic Expressions and Equations
|
Solving quadratic equations
The formation of quadratic equations |
By the end of the
lesson, the learner
should be able to:
solve quadratic equations |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 208
|
|
8 | 6 |
Quadratic Expressions and Equations
|
Formation and solving of quadratic equations from word problems
Solving on quadratic equations Forming quadratic equations from the roots |
By the end of the
lesson, the learner
should be able to:
form and solve quadratic equations from word problems |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 208-210
|
|
9 |
MIDTERM |
|||||||
10 | 1 |
Linear Inequalities
|
Inequalities symbols
Number line Inequalities in one unknown |
By the end of the
lesson, the learner
should be able to:
identify and use inequality symbols |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers Negative and positive numbers |
KLB Maths Bk2 Pg. 213-224
|
|
10 | 2 |
Linear Inequalities
|
Graphical representation
Graphical solutions of simultaneous linear inequalities |
By the end of the
lesson, the learner
should be able to:
represent linear inequalities in one unknown graphically |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines Graph papers
Square boards Negative and positive numbers Number lines Graph papers |
KLB Maths Bk2 Pg. 213-224
|
|
10 | 3 |
Linear Inequalities
|
Graphical solutions of simultaneous linear inequalities
Area of the wanted region Inequalities from inequality graphs |
By the end of the
lesson, the learner
should be able to:
solve simultaneous linear inequalities graphically |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers |
KLB Maths Bk2 Pg. 213-224
|
|
10 | 4 |
Linear Inequalities
Linear Motion Linear Motion |
Problem solving.
Displacement, velocity, speed and acceleration Distinguishing terms |
By the end of the
lesson, the learner
should be able to:
solve problems on linear inequalities |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers Stones Pieces of paper |
KLB Maths Bk2 Pg. 213-224
|
|
10 | 5 |
Linear Motion
|
Distinguishing velocity and acceleration
Distance time graphs Interpret the velocity time graph |
By the end of the
lesson, the learner
should be able to:
determine velocity and acceleration |
Learners determine velocity and acceleration
Plotting graphs Drawing graphs |
Graph papers
Stones Pieces of paper Drawn graphs |
KLB Maths Bk2 Pg. 228-238
|
|
10 | 6 |
Linear Motion
|
Interpreting graphs
Relative speed (objects moving in the same direction) |
By the end of the
lesson, the learner
should be able to:
interpret graphs of linear motion |
Learners interpret graphs
|
Drawn graphs
Real life situation Chalkboard illustrations |
KLB
Maths Bk2 Pg.334 |
|
11 | 1 |
Linear Motion
Statistics Statistics |
Problem solving
Definition Collection and organization of data |
By the end of the
lesson, the learner
should be able to:
solve problems on linear motion |
Question answer method
|
Past paper questions
Weighing balance Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB
Maths Bk2 Pg.330 |
|
11 | 2 |
Statistics
|
Frequency tables
Grouped data Mean of ungrouped data |
By the end of the
lesson, the learner
should be able to:
draw a frequency distribution table |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
11 | 3 |
Statistics
|
Median of ungrouped data
Mean of ungrouped data Median of a grouped data modal class |
By the end of the
lesson, the learner
should be able to:
calculate the median of ungrouped data and state the mode |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
11 | 4 |
Statistics
|
Data
Representation.
Line graphs
Bar graphs |
By the end of the
lesson, the learner
should be able to:
represent data in form of a line graph |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
11 | 5 |
Statistics
|
Pictogram
Histograms Frequency polygons |
By the end of the
lesson, the learner
should be able to:
represent data in form of pictures |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Pictures which are whole, half, quarter
Weighing balance Ruler Tape measure Pieces of stick Arm length Foot length Graph papers Histograms drawn. Data |
KLB Maths Bk2 Pg. 241-252
|
|
11 | 6 |
Statistics
|
Histograms with uneven distribution
Interpretation of data Problem solving |
By the end of the
lesson, the learner
should be able to:
draw histograms with uneven distribution |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Data with uneven classes
Real life situations Past paper questions |
KLB Maths Bk2 Pg. 241-252
|
|
12 |
ENDTERM EXAM |
|||||||
13 | 1 |
Angle Properties of a Circle
|
Arc chord segment
Angles subtended by the same arc in the same segment |
By the end of the
lesson, the learner
should be able to:
identify an arc, chord and segment |
Discussions
Drawing circles Measuring radii/ diameters/angles Identifying the parts of a circle |
Chart illustrating arc chord and segment
Chart illustrating Angles subtended by the same arc in same segment are equal |
KLB Maths Bk2 Pg. 264-278
|
|
13 | 2 |
Angle Properties of a Circle
|
Angle at the centre and at the circumference
Angles subtended by the diameter at the circumference Cyclic quadrilateral |
By the end of the
lesson, the learner
should be able to:
relate and compute angle subtended by an arc of a centre and at the circumference |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Chart illustrating Angles subtended at the centre by an arc and one subtended at the circumference
Circles showing the different parts |
KLB Maths Bk2 Pg. 264-278
|
|
13 | 3 |
Angle Properties of a Circle
|
Cyclic quadrilateral
Exterior angle property Problem solving |
By the end of the
lesson, the learner
should be able to:
find and compute angles of a cyclic quadrilateral |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Circles showing the
different parts different parts Past paper questions |
KLB Maths Bk2 Pg. 264-278
|
|
13 | 4 |
Angle Properties of a Circle
Vectors Vectors |
Problem solving
Definition and Representation of vectors Equivalent vectors |
By the end of the
lesson, the learner
should be able to:
state all the properties and use them selectively to solve missing angles. |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Circles showing the
different parts Past paper questions 1x2 matrices Graph papers Square boards Ruler |
KLB Maths Bk2 Pg. 264-278
|
|
13 | 5 |
Vectors
|
Addition of vectors
Multiplication of vectors |
By the end of the
lesson, the learner
should be able to:
add vectors |
Writing position vectors
Adding/subtracting numbers Squaring and getting the square root of numbers |
1x2 matrices
Graph papers Square boards Ruler |
KLB Maths Bk2 Pg. 286-289
|
|
13 | 6 |
Vectors
|
Position vectors
Column vector Magnitude of a vector Mid - point Translation vector |
By the end of the
lesson, the learner
should be able to:
define a position vector illustrate position vectors on a Cartesian plane |
Writing position vectors
Adding/subtracting numbers Squaring and getting the square root of numbers |
1x2 matrices
Graph papers Square boards Ruler |
KLB Maths Bk2 Pg.298
|
|
14 |
CLOSSING |
Your Name Comes Here