If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1 |
Reflection and congruence
|
Symmetry
|
By the end of the
lesson, the learner
should be able to:
Find the lines of symmetry of shapes |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 46-47 Discovering secondary pg 32 |
|
2 | 2 |
Reflection and congruence
|
Reflection
Some general deductions using reflection |
By the end of the
lesson, the learner
should be able to:
Draw an image under reflection |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts Sets |
KLB Mathematics
Book Two Pg 48-50 Discovering secondary pg 33 |
|
2 | 3 |
Reflection and congruence
|
Some general deductions using reflection
Congruence Congruent triangles |
By the end of the
lesson, the learner
should be able to:
Deduce some general rules of reflection |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 57-59 Discovering secondary pg 37 |
|
2 | 4 |
Reflection and congruence
|
Congruent triangles
The ambiguous case |
By the end of the
lesson, the learner
should be able to:
Determine the congruent triangles |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 65-66 Discovering secondary pg 40 |
|
2 | 5 |
Rotation
|
Introduction
Centre of rotation Angle of rotation |
By the end of the
lesson, the learner
should be able to:
Draw an image of an object under rotation |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 71-73 Discovering secondary pg 44 |
|
2 | 6 |
Rotation
|
Rotation in the Cartesian plane
|
By the end of the
lesson, the learner
should be able to:
Rotate objects about the origin |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 75 Discovering secondary pg 47 |
|
3 | 1 |
Rotation
|
Rotation in the Cartesian plane
Rotational symmetry of plane figures Rotational symmetry of solids |
By the end of the
lesson, the learner
should be able to:
Rotate objects about the +180 |
Defining
Discussions Solving problem Explaining |
Sets
Books Videos Charts Apparatus |
KLB Mathematics
Book Two Pg 77 Discovering secondary pg 47 |
|
3 | 2 |
Rotation
Similarity and enlargement |
Rotation and congruence
Similar figures |
By the end of the
lesson, the learner
should be able to:
Determine the relationship between rotation and congruence |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 84 Discovering secondary pg 50 |
|
3 | 3 |
Similarity and enlargement
|
Similar figures
Enlargement Enlarge objects |
By the end of the
lesson, the learner
should be able to:
Use ratio to calculate the lengths of similar figures |
Defining
Discussions Solving problem Explaining |
Sets
Books Videos Charts Apparatus |
KLB Mathematics
Book Two Pg 88-90 Discovering secondary pg 56 |
|
3 | 4 |
Similarity and enlargement
|
Linear scale factor
Negative scale factor |
By the end of the
lesson, the learner
should be able to:
Determine the linear scale factor |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 100 Discovering secondary pg 54 |
|
3 | 5 |
Similarity and enlargement
|
Positive and negative linear scale factor
Area scale factor |
By the end of the
lesson, the learner
should be able to:
Solve problems on linear scale factor |
Defining
Discussions Solving problem Explaining |
Sets
Books Videos Charts Apparatus |
KLB Mathematics
Book Two Pg 105-106 Discovering secondary pg 60 |
|
3 | 6 |
Similarity and enlargement
|
Area of scale factor
Volume scale factor Volume scale factor |
By the end of the
lesson, the learner
should be able to:
Use area scale factor to solve problems |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 108 Discovering secondary pg 64 |
|
4 | 1 |
Similarity and enlargement
Area of Part of a Circle |
Area and volume scale factor
Area of a sector |
By the end of the
lesson, the learner
should be able to:
Solve problems on area and volume scale factor |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts Circles Chart illustrating the area of a sector |
KLB Mathematics
Book Two Pg 111-112 Discovering secondary pg 64 |
|
4 | 2 |
Area of Part of a Circle
|
Area of a segment
Common region between two circles Common region between two circles |
By the end of the
lesson, the learner
should be able to:
find area of a segment |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a minor segment |
KLB Maths Bk2 Pg. 167-169
|
|
4 | 3 |
Area of Part of a Circle
Area of A Triangle |
Problem solving
Area = |
By the end of the
lesson, the learner
should be able to:
solve problems involving the area of part of a circle |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a minor segment Chalkboard illustrations Protractor Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 167-169
|
|
4 | 4 |
Area of A Triangle
|
Solve problems involving =
A =?s(s-a) (s-b) (s-c) Problem solving |
By the end of the
lesson, the learner
should be able to:
solve problems involving area of triangles using the formula Area = |
Discussions
Drawing triangles Measuring lengths/angles Calculating area |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 155-157
|
|
4 | 5 |
Trigonometry
|
Pythagoras Theorem
Solutions of problems Using Pythagoras Theorem |
By the end of the
lesson, the learner
should be able to:
Derive Pythagoras Theorem |
Deriving Pythagoras Theorem
|
Chalkboard Charts Illustrating derived theorem
Charts illustrating Pythagoras theorem |
KLB BK2 Pg 120 Discovering secondary pg 67
|
|
4 | 6 |
Trigonometry
|
Application to real life Situation
Trigonometry Tangent, sine and cosines Trigonometric Table |
By the end of the
lesson, the learner
should be able to:
Use the formula A = ?s(s-a)(s-b)(s-c) to solve problems in real life |
Solving problems in real life using the formula A = ?s(s-a)(s-b)(s-c)
|
Mathematical table
Charts illustrating tangent, sine and cosine |
KLB BK2 Pg 159 Discovering secondary pg 67
|
|
5 | 1 |
Trigonometry
|
Angles and sides of a right angled triangle
Establishing Relationship of sine and cosine of complimentary angles |
By the end of the
lesson, the learner
should be able to:
Use the sine, cosine and tangent in calculating the length of a right angled triangle and also finding the angle given two sides and unknown angle The length can be obtained if one side is given and an angle |
Using mathematical tables Finding the length using sine ratio Finding the length using Cosine and tangent ratio Finding the angle using Sine, cosine and tangent
|
Mathematical table Charts Chalkboard
Chalkboards |
KLB BK2 Pg 125, 139, 140 Discovering secondary pg
|
|
5 | 2 |
Trigonometry
|
Sines and cosines of Complimentary angles
Relationship between tangent, sine and cosine Trigonometric ratios of special angles 30, 45, 60 and 90 |
By the end of the
lesson, the learner
should be able to:
Use the relationship of sine and cosine of complimentary angles in solving problems |
Solving problems involving the sines and cosines of complimentary angles
|
Chalkboard Charts illustrating the relationship of sines and cosines of complimentary angles
Charts showing the three related trigonometric ratio Charts showing isosceles right angled triangle Charts illustrating Equilateral triangle |
KLB BK2 Pg 145
|
|
5 | 3 |
Trigonometry
|
Application of Trigonometric ratios in solving problems
Logarithms of Sines |
By the end of the
lesson, the learner
should be able to:
Solve trigonometric problems without using tables |
Solving trigonometric problems of special angles
|
Chalkboard
Chalkboard Mathematical tables |
KLB BK2 Pg 148
|
|
5 | 4 |
Trigonometry
|
Logarithms of cosines And tangents
Reading tables of logarithms of sines, cosines and tangents Application of trigonometry to real life situations |
By the end of the
lesson, the learner
should be able to:
Read the logarithm of cosines and tangents from mathematical tables |
Reading logarithms of cosine and tangent from mathematical table
|
Chalkboard Mathematical table
Mathematical table |
KLB BK2 Pg 150-152
|
|
5 | 5 |
Trigonometry
|
Area of a triangle Area of a triangle given the base and height (A = ? bh)
Area of a triangle using the formula (A = ? absin?) |
By the end of the
lesson, the learner
should be able to:
Calculate the are of a triangle given the base and height |
Calculating the area of a triangle given the base and height
|
Chart illustrating worked problem Chalkboard
Charts illustrating a triangle with two sides and an included angle Charts showing derived formula |
KLB BK2 Pg 155
|
|
5 | 6 |
Trigonometry
|
Area of a triangle using the formula A = ?s(s-a)(s-b)(s-c)
Area of Quadrilateral and Polygons Area of a square, rectangle, rhombus, parallelogram and trapezium Area of a kite |
By the end of the
lesson, the learner
should be able to:
Solve problems on the area of a triangle Given three sizes using the formula A = ?s(s-a)(s-b)(s-c) |
Solving problems on the area of triangle given three sides of a triangle
|
Charts illustrating a triangle with three sides Charts illustrating a worked example i.e. mathematical table
Charts illustrating formula used in calculating the areas of the quadrilateral Model of a kite |
KLB BK2 Pg 157-158
|
|
6 | 1 |
Trigonometry
|
Area of other polygons (regular polygon) e.g. Pentagon
Area of irregular Polygon Area of part of a circle Area of a sector (minor sector and a major sector) |
By the end of the
lesson, the learner
should be able to:
Find the area of a regular polygon |
Calculating the area of a regular polygon
|
Mathematical table Charts illustrating Polygons
Charts illustrating various irregular polygons Polygonal shapes Charts illustrating sectors |
KLB BK2 Pg 164
|
|
6 | 2 |
Trigonometry
|
Defining a segment of a circle Finding the area of a segment of a circle
Area of a common region between two circles given the angles and the radii |
By the end of the
lesson, the learner
should be able to:
- Define what a segment of a circle is - Find the area of a segment of a circle |
Finding the area of a segment by first finding the area of a sector less the area of a smaller sector given R and r and angle ?
|
Chart illustrating a Segment
Charts illustrating common region between the circles Use of a mathematical table during calculation |
KLB BK2 Pg 169-170
|
|
6 | 3 |
Trigonometry
|
Area of a common region between two circles given only the radii of the two circles and a common chord
Surface area of solids Surface area of prisms Cylinder (ii) Triangular prism (iii) Hexagonal prism Area of a square based Pyramid |
By the end of the
lesson, the learner
should be able to:
Calculate the area of common region between two circle given the radii of the two intersecting circles and the length of a common chord of the two circles |
Finding the area of a common region between two intersecting
|
Charts illustrating common region between two intersecting circles
Models of cylinder, triangular and hexagonal prisms Models of a square based pyramid |
KLB BK 2 Pg 176
|
|
6 | 4 |
Trigonometry
|
Surface area of a Rectangular based Pyramid
Surface area of a cone using the formula A = ?r2 + ?rl |
By the end of the
lesson, the learner
should be able to:
Find the surface area of a rectangular based pyramid |
Finding the surface area of a rectangular based pyramid
|
Models of a Rectangular based pyramid
Models of a cone |
KLB BK 2 Pg 179-180
|
|
6 | 5 |
Trigonometry
|
Surface area of a frustrum of a cone and a pyramid
Finding the surface area of a sphere Surface area of a Hemispheres |
By the end of the
lesson, the learner
should be able to:
Find the surface area of a frustrum of a cone and pyramid |
Finding the surface area of a frustrum of a cone and a pyramid
|
Models of frustrum of a cone and a pyramid
Models of a sphere Charts illustrating formula for finding the surface area of a sphere Models of a hemisphere |
KLB BK 2 Pg 182
|
|
6 | 6 |
Trigonometry
|
Volume of Solids Volume of prism (triangular based prism)
Volume of prism (hexagonal based prism) given the sides and angle |
By the end of the
lesson, the learner
should be able to:
Find the volume of a triangular based prism |
Finding the volume of a triangular based prism
|
Models of a triangular based prism
Models of hexagonal based prism |
KLB BK 2 Pg 186
|
|
7 | 1 |
Trigonometry
|
Volume of a pyramid (square based and rectangular based)
Volume of a cone Volume of a frustrum of a cone |
By the end of the
lesson, the learner
should be able to:
Find the volume of a square based pyramid and rectangular based pyramid |
Finding the surface area of the base Applying the formula V=?x base area x height to get the volume of the pyramids (square and rectangular based)
|
Models of square and Rectangular based Pyramids
Model of a cone Models of a frustrum of a cone |
KLB BK 2 Pg 189-190
|
|
7 | 2 |
Trigonometry
|
Volume of a frustrum of a pyramid
Volume of a sphere (v = 4/3?r3) |
By the end of the
lesson, the learner
should be able to:
Find the volume of a frustrum of a Pyramid |
Finding volume of a full pyramid Finding volume of cutoff pyramid Find volume of the remaining fig (frustrum) by subtracting i.e. Vf = (V ? v)
|
Models of frustrum of a pyramid
Model of a sphere Mathematical table |
KLB BK 2 Pg 194
|
|
7 | 3 |
Trigonometry
Surface Area of Solids |
Volume of a Hemisphere {(v = ? (4/3?r3)}
Application of area of triangles to real life Surface area of prisms |
By the end of the
lesson, the learner
should be able to:
Find the volume of a hemisphere |
Working out the volume of a hemisphere
|
Models of hemisphere
Mathematical table Chart illustrating formula used Prism Chalkboard illustrations |
Macmillan BK 2 Pg 173
|
|
7 | 4 |
Surface Area of Solids
|
Surface area of pyramid
Surface area of a cone |
By the end of the
lesson, the learner
should be able to:
find the surface area of a pyramid |
Drawing pyramids
Measuring lengths/ angles Opening pyramids to form nets Discussions Calculating area |
Pyramids with square base, rectangular base, triangular base
Cone |
KLB Maths Bk2 Pg. 178
|
|
7 | 5 |
Surface Area of Solids
|
Surface area of frustrum with circular base
Surface area of frustrum with square base Surface area of frustrum with rectangular base |
By the end of the
lesson, the learner
should be able to:
find the surface area of frustrum with circular base |
Drawing cones/frustums
Making cones/frustums Measuring lengths/ angles Discussions |
Chart illustrating the surface area of a frustrum
Chart illustrating frustrum with a square base Chart illustrating frustrum with a rectangular base |
KLB Maths Bk2 Pg. 181-283
KLBMathematics Bk2 Discovering Secondary Mathematics Bk2 |
|
7 | 6 |
Surface Area of Solids
|
Surface area of spheres
Problem solving |
By the end of the
lesson, the learner
should be able to:
find the surface area of a sphere |
Sketching spheres
Making spheres Measuring diameters/ radii of spheres Discussions |
Chalkboard illustrations
Past paper questions |
KLB Maths Bk2 Pg. 183
|
|
8 | 1 |
Volume of Solids
|
Volume of prism
Volume of pyramid Volume of a cone |
By the end of the
lesson, the learner
should be able to:
find the volume of a prism |
Identifying prisms
Identifying the cross-sectional area Drawing/sketching prisms |
Prism
Pyramid Cone |
KLB Maths Bk2 Pg. 186-188
|
|
8 | 2 |
Volume of Solids
|
Volume of a sphere
Volume of frustrum |
By the end of the
lesson, the learner
should be able to:
find the volume of a sphere |
Identifying spheres
Sketching spheres Measuring radii/ diameters Discussions |
Sphere
Frustrum with circular base |
KLB Maths Bk2 Pg. 195
|
|
8 | 3 |
Volume of Solids
|
Volume of frustrum with a square base
Volume of frustrum with a rectangular base Application to real life situation |
By the end of the
lesson, the learner
should be able to:
find the volume of a frustrum with a square base |
Making cones/frustums
Opening cones/frustums to form nets |
Frustrum with square base
Frustrum with rectangular base Models of pyramids, prism, cones and spheres |
KLB Maths Bk2 Pg. 192-193
|
|
8 | 4 |
Volume of Solids
Quadratic Expressions and Equations Quadratic Expressions and Equations |
Problem solving
Expansion of Algebraic Expressions Quadratic identities |
By the end of the
lesson, the learner
should be able to:
solve problems on volume of solids |
Making cones/frustums
Opening cones/frustums to form nets |
Past paper questions
Real-life experiences Worked out expressions |
KLB Maths Bk2 Pg. 196
|
|
8 | 5 |
Quadratic Expressions and Equations
|
Application of identities
Factorise the Identities |
By the end of the
lesson, the learner
should be able to:
identify and use the three Algebraic identities |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 204-205
|
|
8 | 6 |
Quadratic Expressions and Equations
|
Factorise other quadratic expressions
Factorisation of expressions of the form k2-9y2 Simplification of an expression by factorisation |
By the end of the
lesson, the learner
should be able to:
factorise quadratic expressions |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Chart illustrating factorization of a quadratic expression
Real-life experiences Worked out expressions |
KLB Maths Bk2 Pg. 119-122
|
|
9 |
Mid term break |
|||||||
10 | 1 |
Quadratic Expressions and Equations
|
Solving quadratic equations
The formation of quadratic equations |
By the end of the
lesson, the learner
should be able to:
solve quadratic equations |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 208
|
|
10 | 2 |
Quadratic Expressions and Equations
|
Formation and solving of quadratic equations from word problems
Solving on quadratic equations Forming quadratic equations from the roots |
By the end of the
lesson, the learner
should be able to:
form and solve quadratic equations from word problems |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 208-210
|
|
10 | 3 |
Linear Inequalities
|
Inequalities symbols
Number line |
By the end of the
lesson, the learner
should be able to:
identify and use inequality symbols |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers Negative and positive numbers |
KLB Maths Bk2 Pg. 213-224
|
|
10 | 4 |
Linear Inequalities
|
Inequalities in one unknown
Graphical representation Graphical solutions of simultaneous linear inequalities |
By the end of the
lesson, the learner
should be able to:
solve linear inequalities in one unknown and state the integral values |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers Number lines Graph papers |
KLB Maths Bk2 Pg. 213-224
|
|
10 | 5 |
Linear Inequalities
|
Graphical solutions of simultaneous linear inequalities
Area of the wanted region |
By the end of the
lesson, the learner
should be able to:
solve simultaneous linear inequalities graphically |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers |
KLB Maths Bk2 Pg. 213-224
|
|
10 | 6 |
Linear Inequalities
Linear Motion |
Inequalities from inequality graphs
Problem solving. Displacement, velocity, speed and acceleration |
By the end of the
lesson, the learner
should be able to:
form simple linear inequalities from inequality graphs |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers Stones Pieces of paper |
KLB Maths Bk2 Pg. 213-224
|
|
11 | 1 |
Linear Motion
|
Distinguishing terms
Distinguishing velocity and acceleration |
By the end of the
lesson, the learner
should be able to:
distinguish between distance and displacement, speed and velocity |
Plotting graphs
Drawing graphs |
Graph papers
Stones Pieces of paper |
KLB Maths Bk2 Pg. 228-238
|
|
11 | 2 |
Linear Motion
|
Distance time graphs
Interpret the velocity time graph Interpreting graphs |
By the end of the
lesson, the learner
should be able to:
plot and draw the distance time graphs |
Plotting graphs
Drawing graphs |
Graph papers
Stones Pieces of paper Drawn graphs |
KLB Maths Bk2 Pg. 228-238
|
|
11 | 3 |
Linear Motion
|
Relative speed (objects moving in the same direction)
Problem solving |
By the end of the
lesson, the learner
should be able to:
solve problems on objects moving in different directions |
Teacher/pupil discussion
|
Real life situation
Chalkboard illustrations Past paper questions |
KLB
Maths Bk2 Pg.329 |
|
11 | 4 |
Statistics
|
Definition
Collection and organization of data Frequency tables |
By the end of the
lesson, the learner
should be able to:
define statistics |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
11 | 5 |
Statistics
|
Grouped data
Mean of ungrouped data Median of ungrouped data |
By the end of the
lesson, the learner
should be able to:
group data into reasonable classes |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
11 | 6 |
Statistics
|
Mean of ungrouped data
Median of a grouped data modal class |
By the end of the
lesson, the learner
should be able to:
calculate the mean of a grouped data |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
12 | 1 |
Statistics
|
Data
Representation.
Line graphs
Bar graphs Pictogram |
By the end of the
lesson, the learner
should be able to:
represent data in form of a line graph |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers Pictures which are whole, half, quarter |
KLB Maths Bk2 Pg. 241-252
|
|
12 | 2 |
Statistics
|
Histograms
Frequency polygons |
By the end of the
lesson, the learner
should be able to:
represent data in form of histograms |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers Histograms drawn. Data |
KLB Maths Bk2 Pg. 241-252
|
|
12 | 3 |
Statistics
|
Histograms with uneven distribution
Interpretation of data Problem solving |
By the end of the
lesson, the learner
should be able to:
draw histograms with uneven distribution |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Data with uneven classes
Real life situations Past paper questions |
KLB Maths Bk2 Pg. 241-252
|
|
12 | 4 |
Angle Properties of a Circle
|
Arc chord segment
Angles subtended by the same arc in the same segment |
By the end of the
lesson, the learner
should be able to:
identify an arc, chord and segment |
Discussions
Drawing circles Measuring radii/ diameters/angles Identifying the parts of a circle |
Chart illustrating arc chord and segment
Chart illustrating Angles subtended by the same arc in same segment are equal |
KLB Maths Bk2 Pg. 264-278
|
|
12 | 5 |
Angle Properties of a Circle
|
Angle at the centre and at the circumference
Angles subtended by the diameter at the circumference Cyclic quadrilateral |
By the end of the
lesson, the learner
should be able to:
relate and compute angle subtended by an arc of a centre and at the circumference |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Chart illustrating Angles subtended at the centre by an arc and one subtended at the circumference
Circles showing the different parts |
KLB Maths Bk2 Pg. 264-278
|
|
12 | 6 |
Angle Properties of a Circle
|
Cyclic quadrilateral
Exterior angle property Problem solving Problem solving |
By the end of the
lesson, the learner
should be able to:
find and compute angles of a cyclic quadrilateral |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Circles showing the
different parts different parts Past paper questions different parts Past paper questions |
KLB Maths Bk2 Pg. 264-278
|
Your Name Comes Here