If this scheme pleases you, click here to download.
WK | LSN | STRAND | SUB-STRAND | LESSON LEARNING OUTCOMES | LEARNING EXPERIENCES | KEY INQUIRY QUESTIONS | LEARNING RESOURCES | ASSESSMENT METHODS | REFLECTION |
---|---|---|---|---|---|---|---|---|---|
1 | 1-2 |
Living Things and Their Environment
|
Nutrition in animals - Modes of nutrition
Nutrition in animals - Dentition in animals |
By the end of the
lesson, the learner
should be able to:
- Discuss different modes of nutrition in animals - Differentiate between heterotrophic modes of nutrition - Show interest in animal nutrition - Define dentition - Differentiate between homodont and heterodont dentition - Show interest in animal dentition |
- Search for information on modes of nutrition
- Discuss parasitic, saprophytic, symbiotic and holozoic nutrition - Share findings with the class - Observe specimens or models of different types of teeth - Identify homodont and heterodont dentition - Draw and label diagrams of different teeth types |
How do animals obtain their food?
What is dentition? |
- Textbooks (KLB Integrated Science pg. 80)
- Digital resources - Charts on animal nutrition - Textbooks (KLB Integrated Science pg. 81) - Models of animal teeth - Digital resources - Charts of teeth |
- Written test
- Oral questions
- Observation
- Drawings - Written questions - Oral assessment |
|
1 | 3 |
Living Things and Their Environment
|
Nutrition in animals - Types and structure of teeth
|
By the end of the
lesson, the learner
should be able to:
- Identify different types of teeth - Describe the structure of teeth - Appreciate the relationship between structure and function in teeth |
- Examine models or specimens of different teeth types
- Draw and label external and internal structure of teeth - Discuss functions of different teeth parts |
How are teeth adapted to their functions?
|
- Textbooks (KLB Integrated Science pg. 82)
- Models of teeth - Digital resources - Charts of teeth |
- Drawings
- Written assessment
- Observation
|
|
1 | 4 |
Living Things and Their Environment
|
Nutrition in animals - Functions of different teeth
|
By the end of the
lesson, the learner
should be able to:
- Describe functions of different types of teeth - Relate teeth structure to their functions - Show interest in adaptations of teeth |
- Discuss functions of teeth using specimens or models
- Identify adaptations of teeth to their functions - Share findings with peers |
How do the different types of teeth function during feeding?
|
- Textbooks (KLB Integrated Science pg. 83)
- Models of teeth - Digital resources - Charts |
- Written assessment
- Oral questions
- Observation
|
|
1 | 5 |
Living Things and Their Environment
|
Nutrition in animals - Classification based on dentition
|
By the end of the
lesson, the learner
should be able to:
- Classify animals based on their dentition - Determine dental formula of different animals - Show interest in dentition patterns |
- Study specimens or models of jaws of different animals
- Count teeth in upper and lower jaws - Determine dental formula of different animals |
How are animals classified based on their dentition?
|
- Textbooks (KLB Integrated Science pg. 84)
- Specimens or models of animal jaws - Digital resources |
- Written assessment
- Oral questions
- Practical skills
|
|
2 | 1-2 |
Living Things and Their Environment
|
Nutrition in animals - Herbivores, carnivores, omnivores
Nutrition in animals - Digestive system in humans |
By the end of the
lesson, the learner
should be able to:
- Identify dentition of herbivores, carnivores and omnivores - Explain adaptations of teeth to different feeding habits - Show interest in relationship between dentition and diet - Identify parts of the human digestive system - Draw and label the digestive system - Appreciate the organization of the digestive system |
- Study jaws of herbivores, carnivores and omnivores
- Identify adaptations of teeth to feeding habits - Discuss dental formula of different animal groups - Study charts on human digestive system - Identify parts of the digestive system - Draw and label the system |
How does dentition reflect the feeding habits of animals?
What are the main parts of the human digestive system? |
- Textbooks (KLB Integrated Science pg. 85)
- Models or specimens of animal jaws - Digital resources - Charts - Textbooks (KLB Integrated Science pg. 86) - Charts of digestive system - Models - Digital resources |
- Written assessment
- Oral questions
- Practical skills
- Drawings - Written assessment - Oral questions |
|
2 | 3 |
Living Things and Their Environment
|
Nutrition in animals - Process of digestion
|
By the end of the
lesson, the learner
should be able to:
- Explain the process of digestion along the alimentary canal - Describe the role of digestive juices and enzymes - Show interest in the digestive process |
- Search for information on digestion in the alimentary canal
- Discuss digestion in the mouth, stomach, duodenum and ileum - Watch animations on the digestive process |
How does the process of digestion occur?
|
- Textbooks (KLB Integrated Science pg. 87)
- Digital resources - Charts of digestive process |
- Written assessment
- Oral questions
- Observation
|
|
2 | 4 |
Living Things and Their Environment
|
Nutrition in animals - Absorption and assimilation
|
By the end of the
lesson, the learner
should be able to:
- Describe the process of absorption in the ileum - Explain the process of assimilation of nutrients - Appreciate the efficiency of the digestive system |
- Discuss adaptations of the ileum to absorption
- Draw and label the structure of a villus - Discuss fate of absorbed food substances |
How are digested food substances absorbed and utilized?
|
- Textbooks (KLB Integrated Science pg. 88)
- Charts of villi structure - Digital resources |
- Written assessment
- Drawings
- Oral questions
|
|
2 | 5 |
Living Things and Their Environment
|
Reproduction in plants - Functions of parts of a flower
|
By the end of the
lesson, the learner
should be able to:
- Identify parts of a flower - Describe functions of flower parts - Show interest in flower structure |
- Collect and examine suitable flowers
- Identify calyx, corolla, pistil, stamen - Discuss functions of each part |
What are the different parts of a flower and their functions?
|
- Textbooks (KLB Integrated Science pg. 86)
- Fresh flowers - Hand lens - Charts of flower structure |
- Practical skills
- Drawings
- Written assessment
|
|
3 | 1-2 |
Living Things and Their Environment
|
Reproduction in plants - Pollination
Reproduction in plants - Adaptations to insect pollination |
By the end of the
lesson, the learner
should be able to:
- Define pollination - Differentiate between self and cross-pollination - Appreciate the importance of pollination - Identify features of insect-pollinated flowers - Explain adaptations of flowers to insect pollination - Show interest in flower adaptations |
- Discuss the meaning of pollination
- Distinguish between self and cross-pollination - Illustrate different types of pollination - Examine an insect-pollinated flower - Record color, scent, size of flower - Discuss adaptations to insect pollination |
What is pollination and why is it important?
How are flowers adapted to insect pollination? |
- Textbooks (KLB Integrated Science pg. 87)
- Digital resources - Charts on pollination - Textbooks (KLB Integrated Science pg. 88) - Insect-pollinated flowers - Hand lens - Charts |
- Written assessment
- Oral questions
- Observation
- Practical skills - Written assessment - Oral questions |
|
3 | 3 |
Living Things and Their Environment
|
Reproduction in plants - Adaptations to wind pollination
|
By the end of the
lesson, the learner
should be able to:
- Identify features of wind-pollinated flowers - Explain adaptations of flowers to wind pollination - Compare wind and insect pollination |
- Examine a wind-pollinated flower
- Record structural features - Discuss adaptations to wind pollination |
How are flowers adapted to wind pollination?
|
- Textbooks (KLB Integrated Science pg. 94)
- Wind-pollinated flowers (grass/maize) - Hand lens - Charts |
- Practical skills
- Written assessment
- Oral questions
|
|
3 | 4 |
Living Things and Their Environment
|
Reproduction in plants - Field observation of pollination
|
By the end of the
lesson, the learner
should be able to:
- Observe pollinating agents in action - Identify different types of pollinating agents - Show interest in natural pollination processes |
- Survey different areas to identify flower types
- Observe organisms visiting flowers - Record observations on pollinating agents |
What organisms act as pollinating agents?
|
- Textbooks (KLB Integrated Science pg. 95)
- Flowers in school compound - Hand lens - Camera/smartphone |
- Field observation skills
- Written reports
- Practical assessment
|
|
3 | 5 |
Living Things and Their Environment
|
Reproduction in plants - Fertilization in flowering plants
|
By the end of the
lesson, the learner
should be able to:
- Describe structures containing male and female gametes - Explain the process of fertilization in flowering plants - Appreciate sexual reproduction in plants |
- Search for information on fertilization in plants
- Study diagrams of pollen grains and embryo sacs - Discuss pollen tube growth and fertilization |
How does fertilization occur in flowering plants?
|
- Textbooks (KLB Integrated Science pg. 96)
- Digital resources - Charts on plant fertilization |
- Written assessment
- Oral questions
- Drawings
|
|
4 | 1-2 |
Living Things and Their Environment
|
Reproduction in plants - Double fertilization
Reproduction in plants - Fruit formation |
By the end of the
lesson, the learner
should be able to:
- Explain the process of double fertilization - Describe formation of zygote and endosperm - Appreciate the uniqueness of flowering plant reproduction - Describe the process of fruit formation - Explain development of ovary into fruit - Show interest in post-fertilization changes |
- Search for animations on double fertilization
- Discuss the fusion of nuclei in the embryo sac - Make a model of double fertilization - Search for information on fruit formation - Discuss events in fruit development - Draw labeled diagrams of fruits |
What happens during double fertilization?
How does a fruit develop after fertilization? |
- Textbooks (KLB Integrated Science pg. 97)
- Digital resources - Charts on double fertilization - Textbooks (KLB Integrated Science pg. 98) - Digital resources - Various fruits - Charts |
- Model making
- Written assessment
- Oral questions
- Drawings - Written assessment - Oral questions |
|
4 | 3 |
Living Things and Their Environment
|
Reproduction in plants - Types of fruits
|
By the end of the
lesson, the learner
should be able to:
- Classify fruits based on structure - Differentiate between succulent and dry fruits - Show interest in fruit diversity |
- Collect various fruits and seeds
- Group fruits into dry and succulent types - Observe internal features of different fruits |
How are fruits classified?
|
- Textbooks (KLB Integrated Science pg. 99)
- Various fruits - Knife/scalpel - Specimen dishes |
- Practical skills
- Written assessment
- Classification charts
|
|
4 | 4 |
Living Things and Their Environment
|
Reproduction in plants - Fruit and seed dispersal
|
By the end of the
lesson, the learner
should be able to:
- Explain the importance of fruit and seed dispersal - Describe different methods of dispersal - Appreciate adaptations for dispersal |
- Collect fruits and seeds from different plants
- Observe external features - Group fruits according to dispersal methods |
How are fruits and seeds dispersed?
|
- Textbooks (KLB Integrated Science pg. 102)
- Various fruits and seeds - Hand lens - Specimen dishes |
- Practical skills
- Written assessment
- Observation
|
|
4 | 5 |
Living Things and Their Environment
|
Reproduction in plants - Animals as dispersal agents
|
By the end of the
lesson, the learner
should be able to:
- Identify fruits dispersed by animals - Explain adaptations for animal dispersal - Show interest in plant-animal interactions |
- Observe fruits adapted for animal dispersal
- Identify hooks, edible parts, and other adaptations - Discuss the role of animals in seed dispersal |
How are fruits adapted for dispersal by animals?
|
- Textbooks (KLB Integrated Science pg. 106)
- Fruits with hooks (black jack) - Succulent fruits - Hand lens |
- Practical skills
- Written assessment
- Observation
|
|
5 | 1-2 |
Living Things and Their Environment
|
Reproduction in plants - Water as a dispersal agent
Reproduction in plants - Wind as a dispersal agent |
By the end of the
lesson, the learner
should be able to:
- Identify fruits dispersed by water - Explain adaptations for water dispersal - Appreciate plant-environment interactions - Identify fruits dispersed by wind - Explain adaptations for wind dispersal - Show interest in dispersal mechanisms |
- Observe fruits adapted for water dispersal
- Identify buoyancy adaptations - Discuss features of water-dispersed fruits - Observe fruits adapted for wind dispersal - Identify wings, hair, feathery structures - Discuss censor mechanism and other adaptations |
How are fruits adapted for dispersal by water?
How are fruits adapted for dispersal by wind? |
- Textbooks (KLB Integrated Science pg. 107)
- Coconut fruit if available - Pictures of water-dispersed fruits - Digital resources - Textbooks (KLB Integrated Science pg. 108) - Wind-dispersed fruits/seeds - Hand lens - Digital resources |
- Written assessment
- Oral questions
- Observation
- Practical skills - Written assessment - Observation |
|
5 | 3 |
Living Things and Their Environment
|
Reproduction in plants - Self-dispersal mechanism
|
By the end of the
lesson, the learner
should be able to:
- Describe explosive dispersal mechanism - Explain adaptations for self-dispersal - Appreciate diversity in dispersal methods |
- Observe fruits with explosive dispersal
- Identify legumes and other explosive fruits - Discuss explosive mechanism process |
How do some plants disperse their seeds without external agents?
|
- Textbooks (KLB Integrated Science pg. 109)
- Pods of legumes - Castor oil fruits if available - Digital resources |
- Written assessment
- Oral questions
- Observation
|
|
5 | 4 |
Living Things and Their Environment
|
Reproduction in plants - Importance of dispersal
|
By the end of the
lesson, the learner
should be able to:
- Explain the importance of fruit and seed dispersal - Describe benefits of dispersal for plant survival - Appreciate ecological significance of dispersal |
- Search for information on importance of dispersal
- Discuss colonization of new areas - Discuss reduced competition through dispersal |
Why is fruit and seed dispersal important?
|
- Textbooks (KLB Integrated Science pg. 110)
- Digital resources - Reference books |
- Written assessment
- Oral questions
- Group discussions
|
|
5 | 5 |
Living Things and Their Environment
|
Reproduction in plants - Effect of agrochemicals
|
By the end of the
lesson, the learner
should be able to:
- Explain effects of agrochemicals on pollinating agents - Discuss impact on plant reproduction - Show concern for environmental conservation |
- Search for information on agrochemicals
- Discuss categories of agrochemicals - Analyze effects on pollinators and plant reproduction |
How do agrochemicals affect pollination and reproduction in plants?
|
- Textbooks (KLB Integrated Science pg. 111)
- Digital resources - Charts on agrochemicals |
- Written assessment
- Oral questions
- Group discussions
|
|
6 | 1-2 |
Living Things and Their Environment
|
Reproduction in plants - Role of flowers in nature
The interdependence of life - Components of the environment |
By the end of the
lesson, the learner
should be able to:
- Explain the role of flowers in nature - Describe ecological and economic importance of flowers - Appreciate the significance of flowers - Define ecosystem, ecology and environment - Identify biotic and abiotic components - Show interest in interactions in ecosystems |
- Search for information on roles of flowers
- Discuss ecological functions of flowers - Discuss social and economic value of flowers - Study diagrams of ecosystems - Identify living and non-living components - Discuss relationships between organisms |
What is the role of flowers in nature?
What is an ecosystem? |
- Textbooks (KLB Integrated Science pg. 111)
- Digital resources - Reference books - Textbooks (KLB Integrated Science pg. 115) - Digital resources - Charts of ecosystems |
- Written assessment
- Oral questions
- Group presentations
- Written assessment - Oral questions - Observation |
|
6 | 3 |
Living Things and Their Environment
|
The interdependence of life - Components of the environment
|
By the end of the
lesson, the learner
should be able to:
- Define ecosystem, ecology and environment - Identify biotic and abiotic components - Show interest in interactions in ecosystems |
- Study diagrams of ecosystems
- Identify living and non-living components - Discuss relationships between organisms |
What is an ecosystem?
|
- Textbooks (KLB Integrated Science pg. 115)
- Digital resources - Charts of ecosystems |
- Written assessment
- Oral questions
- Observation
|
|
6 | 4 |
Living Things and Their Environment
|
The interdependence of life - Competition
|
By the end of the
lesson, the learner
should be able to:
- Define intraspecific and interspecific competition - Explain effects of competition on organisms - Show interest in competitive interactions |
- Search for information on competition in ecosystems
- Discuss effects on number and distribution of organisms - Analyze examples of competition |
How does competition affect organisms in an ecosystem?
|
- Textbooks (KLB Integrated Science pg. 116)
- Digital resources - Reference books |
- Written assessment
- Oral questions
- Group discussions
|
|
6 | 5 |
Living Things and Their Environment
|
The interdependence of life - Predation
|
By the end of the
lesson, the learner
should be able to:
- Define predation, predator and prey - Explain adaptations of predators and prey - Show interest in predator-prey relationships |
- Search for information on predation
- Discuss adaptations of predators and prey - Analyze predator-prey population dynamics |
How does predation affect population dynamics?
|
- Textbooks (KLB Integrated Science pg. 117)
- Digital resources - Videos on predation |
- Written assessment
- Oral questions
- Group discussions
|
|
7 | 1-2 |
Living Things and Their Environment
|
The interdependence of life - Parasitism
The interdependence of life - Symbiosis |
By the end of the
lesson, the learner
should be able to:
- Define parasitism, parasite and host - Explain effects of parasites on hosts - Show interest in parasite-host relationships - Define symbiosis - Describe examples of symbiotic relationships - Appreciate mutual benefits in symbiosis |
- Search for information on parasitism
- Discuss types of parasites affecting humans and animals - Analyze effect on distribution of organisms - Search for information on symbiotic relationships - Discuss root nodules, lichens, and ox-pecker relationships - Analyze benefits to each partner |
How do parasites affect their hosts?
How do organisms benefit from symbiotic relationships? |
- Textbooks (KLB Integrated Science pg. 119)
- Digital resources - Charts on parasitism - Textbooks (KLB Integrated Science pg. 120) - Digital resources - Charts on symbiosis |
- Written assessment
- Oral questions
- Group discussions
|
|
7 | 3 |
Living Things and Their Environment
|
The interdependence of life - Saprophytism
|
By the end of the
lesson, the learner
should be able to:
- Define saprophytism - Explain the role of saprophytes in ecosystems - Appreciate decomposers in nutrient cycling |
- Search for information on saprophytes
- Discuss bread molds, mushrooms and other decomposers - Analyze effects on nutrient cycling |
How do saprophytes contribute to ecosystem functioning?
|
- Textbooks (KLB Integrated Science pg. 121)
- Digital resources - Photographs of fungi |
- Written assessment
- Oral questions
- Group presentations
|
|
7 | 4 |
Living Things and Their Environment
|
The interdependence of life - Temperature effects
|
By the end of the
lesson, the learner
should be able to:
- Measure environmental temperature - Explain effects of temperature on organisms - Show interest in abiotic factors |
- Suspend thermometer to measure air temperature
- Measure soil and water temperature - Discuss effects of temperature on organisms |
How does temperature affect living organisms?
|
- Textbooks (KLB Integrated Science pg. 122)
- Thermometers - Water in basin - Digital resources |
- Practical skills
- Written assessment
- Oral questions
|
|
7 | 5 |
Living Things and Their Environment
|
The interdependence of life - Light effects
|
By the end of the
lesson, the learner
should be able to:
- Explain how light affects organisms - Describe importance of light intensity, quality and duration - Show interest in light as an ecological factor |
- Discuss aspects of light affecting organisms
- Explain how light affects plants and animals - Discuss measurement of light in ecosystems |
How does light affect organisms in an ecosystem?
|
- Textbooks (KLB Integrated Science pg. 123)
- Digital resources - Light meter if available - Secchi disc |
- Written assessment
- Oral questions
- Group discussions
|
|
8 | 1-2 |
Living Things and Their Environment
|
The interdependence of life - Atmospheric pressure
The interdependence of life - Humidity effects |
By the end of the
lesson, the learner
should be able to:
- Define atmospheric pressure - Explain effects of atmospheric pressure on organisms - Show interest in pressure as an ecological factor - Define humidity - Explain effects of humidity on organisms - Demonstrate measurement of humidity |
- Discuss meaning of atmospheric pressure
- Explain how pressure changes with altitude - Analyze effects on organisms - Discuss meaning of humidity - Measure humidity using cobalt chloride paper - Analyze effects on plants and animals |
How does atmospheric pressure affect organisms?
How does humidity affect organisms? |
- Textbooks (KLB Integrated Science pg. 124)
- Digital resources - Barometer if available - Textbooks (KLB Integrated Science pg. 125) - Cobalt(II) chloride paper - Forceps - Stopwatch |
- Written assessment
- Oral questions
- Group discussions
- Practical skills - Written assessment - Oral questions |
|
8 | 3 |
Living Things and Their Environment
|
The interdependence of life - Wind effects
|
By the end of the
lesson, the learner
should be able to:
- Define wind and explain how it is measured - Describe effects of wind on organisms - Show interest in wind as an ecological factor |
- Discuss meaning of wind and wind parameters
- Explain effects of wind on plants and animals - Construct simple wind measuring instruments |
How does wind affect living organisms?
|
- Textbooks (KLB Integrated Science pg. 126)
- Digital resources - Materials for windsock/wind vane |
- Practical skills
- Written assessment
- Group work
|
|
8 | 4 |
Living Things and Their Environment
|
The interdependence of life - pH and salinity
|
By the end of the
lesson, the learner
should be able to:
- Define pH and salinity - Measure pH of soil and water samples - Explain effects of pH and salinity on organisms |
- Test pH of water samples
- Test pH of soil samples - Discuss effects on organisms |
How do pH and salinity affect living organisms?
|
- Textbooks (KLB Integrated Science pg. 127)
- Universal indicator paper - Soil and water samples - Test tubes |
- Practical skills
- Written assessment
- Observation
|
|
8 | 5 |
Living Things and Their Environment
|
The interdependence of life - Energy flow
|
By the end of the
lesson, the learner
should be able to:
- Explain energy flow in ecosystems - Describe trophic levels - Appreciate energy transfer in nature |
- Discuss energy flow from sun to producers and consumers
- Explain the concept of trophic levels - Analyze energy loss between trophic levels |
How does energy flow through an ecosystem?
|
- Textbooks (KLB Integrated Science pg. 128)
- Digital resources - Charts on energy flow |
- Written assessment
- Oral questions
- Group discussions
|
|
9 |
Midterm break |
||||||||
10 | 1-2 |
Living Things and Their Environment
|
The interdependence of life - Food chains
The interdependence of life - Food webs |
By the end of the
lesson, the learner
should be able to:
- Define food chain - Construct simple food chains - Show interest in feeding relationships - Define food web - Construct food webs from food chains - Appreciate complexity of feeding relationships |
- Observe feeding habits of organisms
- Record what each organism feeds on - Construct food chains based on observations - Observe feeding habits of organisms - Construct multiple food chains - Combine food chains into food webs |
What is a food chain?
How do food chains interact to form food webs? |
- Textbooks (KLB Integrated Science pg. 129)
- Digital resources - Charts on food chains - Textbooks (KLB Integrated Science pg. 130) - Digital resources - Charts on food webs |
- Written assessment
- Food chain construction
- Observation
- Food web construction - Written assessment - Group presentations |
|
10 | 3 |
Living Things and Their Environment
|
The interdependence of life - National Parks ecosystem
|
By the end of the
lesson, the learner
should be able to:
- Identify organisms in Kenyan National Parks - Describe interrelationships in National Parks - Appreciate biodiversity conservation |
- Select a National Park for study
- Research organisms found in the park - Construct food webs based on park organisms |
What interrelationships exist in Kenyan National Parks?
|
- Textbooks (KLB Integrated Science pg. 131)
- Digital resources - Reference books on National Parks |
- Project work
- Written assessment
- Group presentations
|
|
10 | 4 |
Living Things and Their Environment
|
The interdependence of life - Decomposers
|
By the end of the
lesson, the learner
should be able to:
- Describe the role of decomposers in ecosystems - Explain nutrient cycling - Appreciate the importance of decomposers |
- Visit a compost site to observe decomposition
- Discuss the role of decomposers in nutrient cycling - Analyze nitrogen, carbon and sulphur cycles |
What role do decomposers play in an ecosystem?
|
- Textbooks (KLB Integrated Science pg. 132)
- Digital resources - School compost site - Hand lens |
- Written assessment
- Practical skills
- Group discussions
|
|
10 | 5 |
Living Things and Their Environment
|
The interdependence of life - Human activities
|
By the end of the
lesson, the learner
should be able to:
- Describe effects of human activities on ecosystems - Explain habitat change, conservation, and species introduction - Show concern for environmental conservation |
- Search for information on human impacts
- Discuss habitat change, poaching, and introduced species - Analyze conservation methods |
How do human activities affect the environment?
|
- Textbooks (KLB Integrated Science pg. 133)
- Digital resources - Reference books |
- Written assessment
- Group presentations
- Debates
|
|
11 | 1-2 |
Force and Energy
|
Curved mirrors - Types of curved mirrors
|
By the end of the
lesson, the learner
should be able to:
- Identify different types of curved mirrors - Describe curved mirror surfaces - Show interest in curved mirrors - Distinguish between concave and convex mirrors - Compare parabolic reflectors with other curved mirrors - Show interest in different types of reflectors |
- Observe different reflector surfaces
- Discuss the description of concave, convex and parabolic reflectors - Compare the surfaces of different curved mirrors - Examine the curving of different mirrors - Identify the reflecting surfaces of different mirrors - Draw diagrams to illustrate different curved mirror surfaces |
How are curved mirrors used in day-to-day life?
How do different curved mirrors differ in structure? |
- KLB Integrated Science pg. 147
- Car driving mirrors - Car headlight reflectors - Laboratory curved mirrors - Digital content on curved mirrors - KLB Integrated Science pg. 147 - Laboratory curved mirrors - Digital resources - Drawing materials |
- Observation
- Oral questions
- Written assignments
- Observation - Drawing assessment - Oral questions |
|
11 | 3 |
Force and Energy
|
Curved mirrors - Images formed by concave and convex mirrors
|
By the end of the
lesson, the learner
should be able to:
- Define terms used in curved mirrors - Identify parts of curved mirrors - Show interest in terminology used in optics |
- Study diagrams illustrating parts of curved mirrors
- Search the Internet and relevant print materials for meanings of optical terms - Discuss terms used in curved mirrors |
What are the key terms used in describing curved mirrors?
|
- KLB Integrated Science pg. 148
- Internet resources - Digital devices - Geometrical sets - Curved mirrors |
- Observation
- Oral questions
- Written assignments
|
|
11 | 4 |
Force and Energy
|
Curved mirrors - Images formed by concave and convex mirrors
|
By the end of the
lesson, the learner
should be able to:
- Describe the pole of a mirror - Explain the center of curvature and radius of curvature - Show interest in features of curved mirrors |
- Locate the pole, center of curvature, and radius on diagrams
- Draw and label the parts of curved mirrors - Discuss the significance of each feature |
How do the parts of curved mirrors relate to image formation?
|
- KLB Integrated Science pg. 149
- Diagrams of curved mirrors - Geometrical sets - Drawing materials |
- Observation
- Drawing assessment
- Oral questions
|
|
11 | 5 |
Force and Energy
|
Curved mirrors - Images formed by concave and convex mirrors
|
By the end of the
lesson, the learner
should be able to:
- Describe the principal axis of curved mirrors - Explain the principal focus and focal plane - Show interest in optical features |
- Draw the principal axis for concave and convex mirrors
- Locate the principal focus on mirror diagrams - Discuss the focal plane and its significance |
How does the principal focus relate to image formation?
|
- KLB Integrated Science pg. 150
- Diagrams of curved mirrors - Geometrical sets - Drawing materials |
- Observation
- Drawing assessment
- Written assignments
|
|
12 | 1-2 |
Force and Energy
|
Curved mirrors - Focal length
Curved mirrors - Position of image formed by concave mirrors |
By the end of the
lesson, the learner
should be able to:
- Define focal length of curved mirrors - Determine focal length experimentally - Show interest in measuring optical parameters - Locate images formed by concave mirrors experimentally - Describe image characteristics for different object positions - Show interest in image formation |
- Define focal length
- Set up an experiment to determine focal length - Measure and record focal length values - Set up apparatus to locate images formed by concave mirrors - Place objects at different positions relative to the mirror - Record image characteristics for each position |
How can we determine the focal length of a curved mirror?
How do image characteristics change with object position? |
- KLB Integrated Science pg. 152
- Concave mirrors - Meter rule - White screen - Mirror holder - KLB Integrated Science pg. 153 - Concave mirrors - Mirror holders - Meter rules - Screens - Candles |
- Observation
- Practical skills assessment
- Written reports
|
|
12 | 3 |
Force and Energy
|
Curved mirrors - Position of image formed by convex mirrors
|
By the end of the
lesson, the learner
should be able to:
- Locate images formed by convex mirrors - Describe image characteristics for convex mirrors - Compare images formed by concave and convex mirrors |
- Observe images formed by convex mirrors
- Record image characteristics - Compare with images formed by concave mirrors |
How do images formed by convex mirrors differ from those formed by concave mirrors?
|
- KLB Integrated Science pg. 154
- Convex mirrors - Mirror holders - Objects - Meter rules |
- Observation
- Oral questions
- Written assignments
|
|
12 | 4 |
Force and Energy
|
Curved mirrors - Rays commonly used for ray diagram construction
|
By the end of the
lesson, the learner
should be able to:
- Identify rays used in ray diagram construction - Explain how different rays are reflected - Show interest in ray diagram construction |
- Search the Internet for information on ray behavior
- Sketch ray diagrams showing reflection of different rays - Discuss with peers and display sketches |
Which rays are most useful for locating images in ray diagrams?
|
- KLB Integrated Science pg. 155
- Internet resources - Digital devices - Manila paper - Drawing materials |
- Observation
- Drawing assessment
- Oral questions
|
|
12 | 5 |
Force and Energy
|
Curved mirrors - Rays commonly used for ray diagram construction
|
By the end of the
lesson, the learner
should be able to:
- Explain how rays parallel to the principal axis are reflected - Describe the reflection of rays passing through focal points - Show interest in ray behavior |
- Draw ray diagrams showing reflection patterns
- Discuss how different rays behave after reflection - Create summary charts of ray behavior |
How does understanding ray behavior help in locating images?
|
- KLB Integrated Science pg. 156
- Drawing materials - Manila paper - Ruler and protractor - Reference materials |
- Observation
- Drawing assessment
- Oral questions
|
Your Name Comes Here