Home






SCHEME OF WORK
INTEGRATED SCIENCE
Grade 9 2025
TERM II
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN STRAND SUB-STRAND LESSON LEARNING OUTCOMES LEARNING EXPERIENCES KEY INQUIRY QUESTIONS LEARNING RESOURCES ASSESSMENT METHODS REFLECTION
1

Opener exam

2 1
Living Things and their Environment
Nutrition in plants - External structure of the leaf
By the end of the lesson, the learner should be able to:

- Identify the external parts of a leaf
- Draw and label external parts of a leaf
- Show interest in exploring plant structures
- Observe pictures showing external structure of a leaf
- Identify external parts of the leaf from the pictures
- Discuss the functions of each external part of the leaf
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 49)
- Charts showing external structure of leaf
- Digital resources
- Fresh leaves
- Observation - Oral questions - Drawings
2 2
Living Things and their Environment
Nutrition in plants - Functions of leaf parts
Nutrition in plants - Observing leaf structures
By the end of the lesson, the learner should be able to:

- Describe the functions of external leaf parts
- Relate the structure of leaf parts to their functions
- Appreciate the diversity of leaf structures
- Discuss the functions of each external part of the leaf
- Relate the structure of leaf parts to their functions
- Share findings with classmates
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 50)
- Charts showing external structure of leaf
- Digital resources
- Fresh leaves
- Hand lens
- Drawing materials
- Observation - Written assignments - Oral presentations
2 3-4
Living Things and their Environment
Nutrition in plants - Leaf adaptations for photosynthesis
Nutrition in plants - Internal structure of the leaf
Nutrition in plants - Leaf tissues for photosynthesis
Nutrition in plants - Internal adaptations for photosynthesis
By the end of the lesson, the learner should be able to:

- Explain how leaf structures are adapted for photosynthesis
- Relate leaf adaptations to their functions
- Show interest in understanding plant adaptations

- Explain the functions of internal leaf tissues
- Relate internal leaf structures to photosynthesis
- Appreciate the complexity of leaf tissues
- Discuss how external leaf structures are adapted for photosynthesis
- Search for information about leaf adaptations from digital devices or print resources
- Make summary notes on leaf adaptations
- Discuss the functions of different internal leaf tissues
- Relate the structure of internal leaf tissues to photosynthesis
- Share findings with classmates
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 51)
- Digital resources
- Charts showing leaf adaptations
- Reference materials
- Mentor Integrated Science (pg. 52)
- Charts showing internal structure of leaf
- Models
- Mentor Integrated Science (pg. 53)
- Charts showing internal leaf tissues
- Digital resources
- Models
- Mentor Integrated Science (pg. 54)
- Charts showing internal leaf adaptations
- Reference materials
- Observation - Written assignments - Oral presentations
2 5
Living Things and their Environment
Nutrition in plants - Structure of chloroplast
Nutrition in plants - Chloroplast adaptations
By the end of the lesson, the learner should be able to:

- Describe the structure of a chloroplast
- Identify parts of a chloroplast and their functions
- Appreciate the role of chloroplasts in photosynthesis
- Observe a diagram showing the structure of a chloroplast
- Identify the parts of a chloroplast
- Discuss the functions of different parts of a chloroplast
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 55)
- Charts showing structure of chloroplast
- Digital resources
- Models
- Mentor Integrated Science (pg. 56)
- Photomicrographs of chloroplasts
- Charts showing chloroplast structure
- Observation - Oral questions - Written assignments
3 1
Living Things and their Environment
Nutrition in plants - Process of photosynthesis
Nutrition in plants - Conditions for photosynthesis
By the end of the lesson, the learner should be able to:

- Explain the process of photosynthesis
- Identify raw materials and products of photosynthesis
- Show interest in understanding photosynthesis
- Discuss conditions and raw materials necessary for photosynthesis
- Identify products of photosynthesis
- Search for information on the process of photosynthesis
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 57)
- Charts showing photosynthesis process
- Digital resources
- Reference materials
- Mentor Integrated Science (pg. 58)
- Charts showing conditions for photosynthesis
- Observation - Oral questions - Written assignments
3 2
Living Things and their Environment
Nutrition in plants - Stages of photosynthesis
Nutrition in plants - Testing for starch
By the end of the lesson, the learner should be able to:

- Describe the light and dark stages of photosynthesis
- Explain where each stage occurs in the chloroplast
- Show curiosity in understanding photosynthetic stages
- Study a chart showing stages of photosynthesis
- Discuss the light and dark stages of photosynthesis
- Explain the products of each stage of photosynthesis
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 59)
- Charts showing stages of photosynthesis
- Digital resources
- Reference materials
- Mentor Integrated Science (pg. 60)
- Apparatus for testing starch in leaves
- Chemicals (iodine solution)
- Fresh leaves
- Heat source
- Observation - Written assignments - Oral questions
3 3-4
Living Things and their Environment
Nutrition in plants - Light and photosynthesis
Nutrition in plants - Carbon (IV) oxide and photosynthesis
Nutrition in plants - Chlorophyll and photosynthesis
Nutrition in plants - Importance of photosynthesis
By the end of the lesson, the learner should be able to:

- Investigate whether light is necessary for photosynthesis
- Control variables in an experiment
- Practice safety measures when conducting experiments

- Investigate whether chlorophyll is necessary for photosynthesis
- Design a fair test using variegated leaves
- Draw conclusions based on evidence
- Design an experiment to investigate the effect of light on photosynthesis
- Set up the experiment with appropriate controls
- Record and analyze results
- Draw conclusions from the experiment
- Design an experiment using variegated leaves to investigate the role of chlorophyll
- Test for starch in variegated leaves
- Record and analyze results
- Draw conclusions from the experiment
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 61)
- Potted plants
- Aluminum foil/carbon paper
- Apparatus for testing starch
- Chemicals
- Mentor Integrated Science (pg. 62)
- Conical flasks with corks
- Potassium hydroxide solution
- Mentor Integrated Science (pg. 63)
- Variegated leaves
- Apparatus for testing starch
- Chemicals
- Heat source
- Mentor Integrated Science (pg. 64)
- Digital resources
- Charts showing importance of photosynthesis
- Reference materials
- Observation - Practical work - Written reports
3 5
Living Things and their Environment
Nutrition in plants - Environmental impact of photosynthesis
Nutrition in animals - Modes of nutrition in animals
By the end of the lesson, the learner should be able to:

- Describe how photosynthesis affects carbon (IV) oxide levels
- Explain the role of photosynthesis in reducing global warming
- Value plants as contributors to environmental balance
- Discuss how photosynthesis affects the carbon cycle
- Explain how plants help reduce carbon (IV) oxide in the atmosphere
- Relate photosynthesis to environmental conservation
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 65)
- Digital resources
- Charts showing carbon cycle
- Reference materials
- Mentor Integrated Science Grade 9 (pg. 73)
- Digital devices
- Pictures of animals with different feeding habits
- Observation - Written assignments - Oral presentations
4 1
Living Things and their Environment
Nutrition in animals - Parasitic mode of nutrition
Nutrition in animals - Saprophytic mode of nutrition
By the end of the lesson, the learner should be able to:

- Explain parasitic mode of nutrition
- Identify animals that exhibit parasitic mode of nutrition
- Appreciate the role of parasites in the ecosystem
- Observe pictures of parasitic animals
- Discuss the characteristics of parasitic animals
- Research on examples of parasitic animals
- Create presentations on parasitic animals
How do different animals feed?
- Mentor Integrated Science Grade 9 (pg. 74)
- Digital devices
- Pictures of parasitic animals
- Pictures/videos of saprophytic organisms
- Observation - Oral questions - Written assignments - Group presentations
4 2
Living Things and their Environment
Nutrition in animals - Symbiotic mode of nutrition
Nutrition in animals - Holozoic mode of nutrition
By the end of the lesson, the learner should be able to:

- Explain symbiotic mode of nutrition
- Identify organisms that exhibit symbiotic relationships in feeding
- Appreciate the interdependence of organisms in nutrition
- Observe pictures of symbiotic relationships
- Discuss examples of symbiotic relationships in feeding
- Research on symbiotic relationships
- Create presentations on symbiotic relationships
How do different animals feed?
- Mentor Integrated Science Grade 9 (pg. 75)
- Digital devices
- Pictures of symbiotic relationships
- Pictures of animals with holozoic feeding
- Observation - Oral questions - Written assignments - Group presentations
4 3-4
Living Things and their Environment
Nutrition in animals - Types of teeth (structure)
Nutrition in animals - Types of teeth (functions)
Nutrition in animals - Dentition in animals (homodont and heterodont)
Nutrition in animals - Dentition in carnivores
By the end of the lesson, the learner should be able to:

- Identify different types of teeth
- Describe the structure of different types of teeth
- Appreciate the diversity in teeth structure

- Differentiate between homodont and heterodont dentition
- Classify animals based on their dentition
- Appreciate the diversity in animal dentition
- Observe and draw different types of teeth
- Use models/charts to identify the structure of different types of teeth
- Discuss the structure and location of different types of teeth in the mouth
- Observe pictures of different animal teeth
- Compare and contrast homodont and heterodont dentition
- Classify animals as either homodont or heterodont
- Research on examples of animals with different dentition types
How is food digested in the human body?
- Mentor Integrated Science Grade 9 (pg. 76)
- Dental models or charts
- Digital devices
- Mentor Integrated Science Grade 9 (pg. 77)
- Mentor Integrated Science Grade 9 (pg. 78)
- Pictures of animal teeth
- Digital devices
- Mentor Integrated Science Grade 9 (pg. 79)
- Pictures/models of carnivore teeth
- Observation - Drawing assessment - Oral questions - Written assignments
- Observation - Oral questions - Classification exercises - Written assignments
4 5
Living Things and their Environment
Nutrition in animals - Dentition in herbivores
By the end of the lesson, the learner should be able to:

- Describe the dentition of herbivores
- Identify adaptations of herbivore teeth to their feeding habits
- Show interest in understanding herbivore dentition
- Observe pictures/models of herbivore teeth
- Discuss the adaptations of herbivore teeth to their feeding habits
- Research on examples of herbivores and their dentition
- Make presentations on herbivore dentition
How is food digested in the human body?
- Mentor Integrated Science Grade 9 (pg. 80)
- Pictures/models of herbivore teeth
- Digital devices
- Observation - Oral questions - Written assignments - Presentations
5 1
Living Things and their Environment
Nutrition in animals - Dentition in omnivores
By the end of the lesson, the learner should be able to:

- Describe the dentition of omnivores
- Identify adaptations of omnivore teeth to their feeding habits
- Show interest in understanding omnivore dentition
- Observe pictures/models of omnivore teeth
- Discuss the adaptations of omnivore teeth to their feeding habits
- Research on examples of omnivores and their dentition
- Make presentations on omnivore dentition
How is food digested in the human body?
- Mentor Integrated Science Grade 9 (pg. 81)
- Pictures/models of omnivore teeth
- Digital devices
- Observation - Oral questions - Written assignments - Presentations
5 2
Living Things and their Environment
Nutrition in animals - Process of digestion (ingestion)
By the end of the lesson, the learner should be able to:

- Explain the process of ingestion in human beings
- Describe the role of teeth and salivary glands in ingestion
- Appreciate the complexity of the digestive process
- Discuss the process of ingestion
- Using charts/models, identify structures involved in ingestion
- Demonstrate the role of teeth and saliva in ingestion
- Research on the process of ingestion
How is food digested in the human body?
- Mentor Integrated Science Grade 9 (pg. 82)
- Charts/models of the digestive system
- Digital devices
- Observation - Oral questions - Written assignments - Demonstrations
5 3-4
Living Things and their Environment
Nutrition in animals - Process of digestion (digestion)
Nutrition in animals - Process of digestion (absorption)
By the end of the lesson, the learner should be able to:

- Explain the process of digestion in human beings
- Identify organs involved in digestion and their functions
- Appreciate the importance of proper digestion

- Explain the process of absorption in human beings
- Identify structures involved in absorption and their adaptations
- Appreciate the efficiency of the absorption process
- Discuss the process of digestion in different parts of the digestive system
- Using charts/models, identify organs involved in digestion
- Research on mechanical and chemical digestion
- Present findings to the class
- Discuss the process of absorption in the small intestine
- Using charts/models, identify structures involved in absorption
- Research on the adaptations of the small intestine for absorption
- Present findings to the class
How is food digested in the human body?
- Mentor Integrated Science Grade 9 (pg. 83)
- Charts/models of the digestive system
- Digital devices
- Observation - Oral questions - Written assignments - Presentations
5 5
Living Things and their Environment
Nutrition in animals - Process of digestion (assimilation)
By the end of the lesson, the learner should be able to:

- Explain the process of assimilation in human beings
- Describe how absorbed nutrients are utilized in the body
- Value the importance of proper nutrition for body functions
- Discuss the process of assimilation
- Research on how different nutrients are used in the body
- Create presentations on the process of assimilation
- Discuss the importance of proper nutrition
How is food digested in the human body?
- Mentor Integrated Science Grade 9 (pg. 84)
- Charts of the circulatory system
- Digital devices
- Observation - Oral questions - Written assignments - Presentations
6 1
Living Things and their Environment
Nutrition in animals - Process of digestion (egestion)
By the end of the lesson, the learner should be able to:

- Explain the process of egestion in human beings
- Identify structures involved in egestion and their functions
- Appreciate the importance of proper waste elimination
- Discuss the process of egestion
- Using charts/models, identify structures involved in egestion
- Research on the importance of fiber in egestion
- Present findings to the class
How is food digested in the human body?
- Mentor Integrated Science Grade 9 (pg. 84)
- Charts/models of the large intestine
- Digital devices
- Observation - Oral questions - Written assignments - Presentations
6 2
Living Things and their Environment
Reproduction in plants - Parts of a flower
Reproduction in plants - Functions of parts of a flower
By the end of the lesson, the learner should be able to:

- Identify external parts of a flower
- Draw and label parts of a flower
- Appreciate the complexity of flower structure
- Collect and observe flowers from the school compound
- Identify and name the parts of the flowers
- Draw and label the parts of a flower
- Discuss the functions of the parts of a flower
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 86)
- Fresh flowers
- Hand lens
- Drawing materials
- Mentor Integrated Science Grade 9 (pg. 87)
- Flower models or charts
- Digital devices
- Observation - Drawing assessment - Oral questions - Written assignments
6 3-4
Living Things and their Environment
Reproduction in plants - Meaning of pollination
Reproduction in plants - Types of pollination (self-pollination)
Reproduction in plants - Types of pollination (cross-pollination)
Reproduction in plants - Agents of pollination (insects)
By the end of the lesson, the learner should be able to:

- Explain the meaning of pollination
- Describe the importance of pollination in plant reproduction
- Appreciate the role of pollination in plant reproduction

- Explain cross-pollination
- Identify plants that undergo cross-pollination
- Appreciate the advantages of cross-pollination
- Discuss the meaning of pollination
- Watch videos on pollination process
- Research on the importance of pollination in plant reproduction
- Present findings to the class
- Discuss cross-pollination
- Use diagrams/charts to illustrate cross-pollination
- Research on examples of plants that undergo cross-pollination
- Compare self-pollination and cross-pollination
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 88)
- Digital devices
- Videos on pollination
- Charts showing pollination
- Mentor Integrated Science Grade 9 (pg. 89)
- Charts showing self-pollination
- Mentor Integrated Science Grade 9 (pg. 89)
- Charts showing cross-pollination
- Digital devices
- Mentor Integrated Science Grade 9 (pg. 90)
- Pictures/videos of insect pollinators
- Observation - Oral questions - Written assignments - Group presentations
6 5
Living Things and their Environment
Reproduction in plants - Agents of pollination (birds, other animals)
Reproduction in plants - Agents of pollination (wind, water)
By the end of the lesson, the learner should be able to:

- Identify birds and other animals as agents of pollination
- Explain how birds and other animals aid in pollination
- Value the diversity of pollination mechanisms
- Observe pictures/videos of birds and other animals as pollinators
- Discuss how birds and other animals aid in pollination
- Research on examples of flowers pollinated by birds and other animals
- Present findings to class
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 90)
- Pictures/videos of bird and animal pollinators
- Digital devices
- Mentor Integrated Science Grade 9 (pg. 91)
- Pictures/videos of wind and water pollination
- Observation - Oral questions - Written assignments - Group presentations
7 1
Living Things and their Environment
Reproduction in plants - Adaptations of flowers to insect pollination
By the end of the lesson, the learner should be able to:

- Identify adaptations of flowers to insect pollination
- Explain how these adaptations facilitate insect pollination
- Appreciate the relationship between structure and function
- Observe insect-pollinated flowers
- Identify and discuss adaptations to insect pollination
- Compare different insect-pollinated flowers
- Create presentations on adaptations to insect pollination
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 92)
- Fresh insect-pollinated flowers
- Pictures of insect-pollinated flowers
- Hand lens
- Observation - Oral questions - Written assignments - Group presentations
7 2
Living Things and their Environment
Reproduction in plants - Adaptations of flowers to wind pollination
By the end of the lesson, the learner should be able to:

- Identify adaptations of flowers to wind pollination
- Explain how these adaptations facilitate wind pollination
- Value the diversity in plant adaptations
- Observe wind-pollinated flowers
- Identify and discuss adaptations to wind pollination
- Compare insect-pollinated and wind-pollinated flowers
- Create presentations on adaptations to wind pollination
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 93)
- Fresh wind-pollinated flowers
- Pictures of wind-pollinated flowers
- Hand lens
- Observation - Oral questions - Written assignments - Group presentations
7 3-4
Living Things and their Environment
Reproduction in plants - Effects of agrochemicals on pollinating agents
Reproduction in plants - Fertilization in flowering plants
By the end of the lesson, the learner should be able to:

- Explain the effects of agrochemicals on pollinating agents
- Describe how these effects impact plant reproduction
- Show concern for the impact of human activities on pollinators

- Explain the process of fertilization in flowering plants
- Describe the journey of pollen tube to the ovule
- Appreciate the complexity of plant reproduction
- Research on the effects of agrochemicals on pollinating agents
- Discuss how these effects impact plant reproduction
- Debate on the use of agrochemicals and their effects on pollination
- Present findings to class
- Watch videos on fertilization in flowering plants
- Use diagrams/charts to illustrate the fertilization process
- Discuss the journey of the pollen tube to the ovule
- Create presentations on fertilization in flowering plants
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 94)
- Digital devices
- Articles on effects of agrochemicals on pollinators
- Mentor Integrated Science Grade 9 (pg. 95)
- Videos on fertilization in plants
- Charts showing fertilization process
- Digital devices
- Observation - Oral questions - Written assignments - Debate assessment
- Observation - Oral questions - Written assignments - Group presentations
7 5
Living Things and their Environment
Reproduction in plants - Seed formation in flowering plants
By the end of the lesson, the learner should be able to:

- Explain the process of seed formation in flowering plants
- Identify the changes that occur during seed formation
- Value the importance of seeds in plant reproduction
- Watch videos on seed formation
- Use diagrams/charts to illustrate seed formation
- Observe different stages of seed development if available
- Discuss the changes that occur during seed formation
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 96)
- Videos on seed formation
- Charts showing seed formation
- Samples of seeds at different developmental stages
- Observation - Oral questions - Written assignments - Drawing assessment
8 1
Living Things and their Environment
Reproduction in plants - Fruit formation in flowering plants
Reproduction in plants - Fruit and seed dispersal (meaning and importance)
By the end of the lesson, the learner should be able to:

- Explain the process of fruit formation in flowering plants
- Identify the changes that occur during fruit formation
- Appreciate the role of fruits in plant reproduction
- Watch videos on fruit formation
- Use diagrams/charts to illustrate fruit formation
- Observe different stages of fruit development if available
- Discuss the changes that occur during fruit formation
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 97)
- Videos on fruit formation
- Charts showing fruit formation
- Samples of fruits at different developmental stages
- Mentor Integrated Science Grade 9 (pg. 98)
- Digital devices
- Charts showing seed dispersal
- Observation - Oral questions - Written assignments - Drawing assessment
8 2
Living Things and their Environment
Reproduction in plants - Modes of fruit and seed dispersal (animals)
By the end of the lesson, the learner should be able to:

- Explain animal dispersal of fruits and seeds
- Identify fruits and seeds dispersed by animals
- Appreciate the role of animals in plant reproduction
- Collect and observe fruits and seeds dispersed by animals
- Discuss the adaptations of these fruits and seeds for animal dispersal
- Research on examples of animal-dispersed fruits and seeds
- Create presentations on animal dispersal
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 99)
- Samples of animal-dispersed fruits and seeds
- Digital devices
- Pictures of animal dispersal
- Observation - Oral questions - Written assignments - Collection assessment
8 3-4
Living Things and their Environment
Reproduction in plants - Modes of fruit and seed dispersal (wind, water)
Reproduction in plants - Modes of fruit and seed dispersal (self-dispersal mechanisms)
By the end of the lesson, the learner should be able to:

- Explain wind and water dispersal of fruits and seeds
- Identify fruits and seeds dispersed by wind and water
- Show interest in different dispersal mechanisms

- Explain self-dispersal mechanisms in fruits and seeds
- Identify fruits and seeds that use self-dispersal mechanisms
- Appreciate the diversity in dispersal mechanisms
- Collect and observe fruits and seeds dispersed by wind and water
- Discuss the adaptations of these fruits and seeds for wind and water dispersal
- Research on examples of wind and water dispersed fruits and seeds
- Create presentations on wind and water dispersal
- Observe fruits that use self-dispersal mechanisms
- Discuss the adaptations of these fruits and seeds for self-dispersal
- Research on examples of self-dispersed fruits and seeds
- Create presentations on self-dispersal mechanisms
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 100)
- Samples of wind and water-dispersed fruits and seeds
- Digital devices
- Pictures of wind and water dispersal
- Mentor Integrated Science Grade 9 (pg. 101)
- Samples of self-dispersed fruits and seeds
- Digital devices
- Pictures of self-dispersal mechanisms
- Observation - Oral questions - Written assignments - Collection assessment
- Observation - Oral questions - Written assignments - Group presentations
8

Midterm break

9 1
Living Things and their Environment
Reproduction in plants - Adaptations of fruits and seeds for dispersal
By the end of the lesson, the learner should be able to:

- Identify adaptations of fruits and seeds for different dispersal methods
- Categorize fruits and seeds based on their dispersal methods
- Value the relationship between structure and function
- Collect and observe different fruits and seeds
- Identify adaptations for different dispersal methods
- Categorize the fruits and seeds based on their dispersal methods
- Create presentations on adaptations for dispersal
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 102)
- Various fruit and seed samples
- Hand lens
- Sorting trays
- Observation - Oral questions - Classification activities - Written assignments
9 2
Living Things and their Environment
Reproduction in plants - Role of flowers in nature
By the end of the lesson, the learner should be able to:

- Explain the role of flowers in nature
- Describe the ecological importance of flowers
- Appreciate the value of flowers in the ecosystem
- Discuss the role of flowers in nature
- Research on the ecological importance of flowers
- Debate on the value of flowers in the ecosystem
- Create presentations on the role of flowers in nature
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 105)
- Digital devices
- Pictures of different flowers and their roles
- Charts on flower roles in ecosystems
- Observation - Oral questions - Written assignments - Group presentations
9 3-4
Living Things and their Environment
The interdependence of life - Components of the environment
The interdependence of life - Biotic factors (predation)
The interdependence of life - Biotic factors (parasitism)
The interdependence of life - Biotic factors (symbiosis)
By the end of the lesson, the learner should be able to:

- Identify biotic and abiotic components of the environment
- Explain the interrelationships between organisms and their environment
- Appreciate the interdependence in ecosystems

- Explain parasitism as a biotic interaction
- Identify examples of parasitic relationships
- Value the diversity of relationships in ecosystems
- Observe different components of the environment in the school compound
- Identify biotic and abiotic components
- Discuss interrelationships between organisms and their environment
- Record observations in a table
- Discuss parasitism as a biotic interaction
- Observe pictures/videos of parasitic relationships
- Research on examples of parasitic relationships
- Present findings to class
What is the role of living and non-living factors in environments?
- Mentor Integrated Science Grade 9 (pg. 107)
- School grounds
- Notebooks
- Digital devices
- Mentor Integrated Science Grade 9 (pg. 108)
- Pictures/videos of predator-prey relationships
- Mentor Integrated Science Grade 9 (pg. 109)
- Pictures/videos of parasitic relationships
- Digital devices
- Mentor Integrated Science Grade 9 (pg. 110)
- Pictures/videos of symbiotic relationships
- Observation - Field notes assessment - Oral questions - Written assignments
- Observation - Oral questions - Written assignments - Group presentations
9 5
Living Things and their Environment
The interdependence of life - Biotic factors (competition)
The interdependence of life - Biotic factors (saprophytic)
By the end of the lesson, the learner should be able to:

- Explain competition as a biotic interaction
- Identify examples of competitive relationships
- Show interest in how competition shapes ecosystems
- Discuss competition as a biotic interaction
- Observe pictures/videos of competitive relationships
- Research on examples of competitive relationships
- Present findings to class
What is the role of living and non-living factors in environments?
- Mentor Integrated Science Grade 9 (pg. 111)
- Pictures/videos of competitive relationships
- Digital devices
- Mentor Integrated Science Grade 9 (pg. 112)
- Pictures/videos of saprophytic organisms
- Observation - Oral questions - Written assignments - Group presentations
10 1
Living Things and their Environment
The interdependence of life - Abiotic factors (temperature)
The interdependence of life - Abiotic factors (light)
By the end of the lesson, the learner should be able to:

- Explain how temperature affects living organisms
- Describe adaptations of organisms to different temperatures
- Value the importance of temperature in ecosystems
- Discuss how temperature affects living organisms
- Research on adaptations of organisms to different temperatures
- Observe pictures/videos of organisms in different temperature zones
- Present findings to class
What is the role of living and non-living factors in environments?
- Mentor Integrated Science Grade 9 (pg. 113)
- Thermometers
- Pictures/videos of organisms in different temperature zones
- Digital devices
- Mentor Integrated Science Grade 9 (pg. 114)
- Light meters (if available)
- Plants grown under different light conditions
- Observation - Oral questions - Written assignments - Group presentations
10 2
Living Things and their Environment
The interdependence of life - Abiotic factors (water)
By the end of the lesson, the learner should be able to:

- Explain how water availability affects living organisms
- Describe adaptations of organisms to different water conditions
- Show interest in water conservation
- Discuss how water availability affects living organisms
- Research on adaptations of organisms to different water conditions
- Compare plants from arid and wet environments
- Present findings to class
What is the role of living and non-living factors in environments?
- Mentor Integrated Science Grade 9 (pg. 115)
- Pictures of plants from arid and wet environments
- Water samples
- Digital devices
- Observation - Oral questions - Written assignments - Group presentations
10 3-4
Living Things and their Environment
The interdependence of life - Abiotic factors (wind)
The interdependence of life - Abiotic factors (atmospheric pressure, pH and salinity)
By the end of the lesson, the learner should be able to:

- Explain how wind affects living organisms
- Describe adaptations of organisms to windy environments
- Appreciate the role of wind in ecosystems

- Explain how atmospheric pressure, pH and salinity affect living organisms
- Describe adaptations of organisms to these abiotic factors
- Value adaptations to different environments
- Discuss how wind affects living organisms
- Research on adaptations of organisms to windy environments
- Observe plants from windy and sheltered environments
- Present findings to class
- Discuss how atmospheric pressure, pH and salinity affect living organisms
- Research on adaptations of organisms to these factors
- Test pH and salinity of different water samples if possible
- Present findings to class
What is the role of living and non-living factors in environments?
- Mentor Integrated Science Grade 9 (pg. 116)
- Pictures of plants from windy and sheltered environments
- Digital devices
- Mentor Integrated Science Grade 9 (pg. 117)
- pH testing equipment (if available)
- Water samples of different salinity
- Digital devices
- Observation - Oral questions - Written assignments - Group presentations
- Observation - Oral questions - Practical assessment - Written assignments
10 5
Living Things and their Environment
The interdependence of life - Energy flow (food chains)
By the end of the lesson, the learner should be able to:

- Explain the concept of food chains
- Construct simple food chains
- Appreciate energy flow in ecosystems
- Discuss the concept of food chains
- Identify producers and consumers in the environment
- Construct simple food chains using organisms observed in the local environment
- Present food chains to class
What is the role of living and non-living factors in environments?
- Mentor Integrated Science Grade 9 (pg. 118)
- Charts showing food chains
- Pictures of local organisms
- Digital devices
- Observation - Oral questions - Food chain construction assessment - Written assignments
11 1
Living Things and their Environment
The interdependence of life - Energy flow (food webs)
By the end of the lesson, the learner should be able to:

- Explain the concept of food webs
- Construct simple food webs
- Value the complexity of feeding relationships in ecosystems
- Discuss the concept of food webs
- Identify how food chains interconnect to form food webs
- Construct simple food webs using organisms observed in the local environment
- Present food webs to class
What is the role of living and non-living factors in environments?
- Mentor Integrated Science Grade 9 (pg. 119)
- Charts showing food webs
- Pictures of local organisms
- Digital devices
- Observation - Oral questions - Food web construction assessment - Written assignments
11 2
Living Things and their Environment
The interdependence of life - Human activities (habitat change)
By the end of the lesson, the learner should be able to:

- Explain how human activities lead to habitat change
- Describe the effects of habitat change on ecosystems
- Show concern for habitat conservation
- Discuss human activities that lead to habitat change
- Research on the effects of habitat change on ecosystems
- Debate on the balance between development and conservation
- Present findings to class
What is the role of living and non-living factors in environments?
- Mentor Integrated Science Grade 9 (pg. 120)
- Pictures showing habitat change
- Digital devices
- Newspaper articles
- Observation - Oral questions - Debate assessment - Written assignments
11 3-4
Living Things and their Environment
The interdependence of life - Human activities (hunting and poaching)
The interdependence of life - Human activities (introduction of new living things)
By the end of the lesson, the learner should be able to:

- Explain the effects of hunting and poaching on ecosystems
- Describe conservation measures against hunting and poaching
- Show concern for wildlife conservation

- Explain the effects of introducing new species to ecosystems
- Describe examples of invasive species and their impacts
- Appreciate the importance of biodiversity conservation
- Discuss the effects of hunting and poaching on ecosystems
- Research on conservation measures against hunting and poaching
- Debate on sustainable hunting practices
- Present findings to class
- Discuss the effects of introducing new species to ecosystems
- Research on examples of invasive species and their impacts
- Debate on the management of invasive species
- Present findings to class
What is the role of living and non-living factors in environments?
- Mentor Integrated Science Grade 9 (pg. 121)
- Pictures related to hunting and poaching
- Digital devices
- Newspaper articles
- Mentor Integrated Science Grade 9 (pg. 122)
- Pictures of invasive species
- Digital devices
- Newspaper articles
- Observation - Oral questions - Debate assessment - Written assignments
11 5
Living Things and their Environment
The interdependence of life - Interrelationships in Kenya national parks
By the end of the lesson, the learner should be able to:

- Describe interrelationships in Kenya national parks
- Construct food chains and food webs of Kenya national parks
- Value the importance of national parks for biodiversity
- Research on interrelationships in Kenya national parks
- Construct food chains and food webs of Kenya national parks
- Discuss the importance of national parks for biodiversity
- Present findings to class
What is the role of living and non-living factors in environments?
- Mentor Integrated Science Grade 9 (pg. 123)
- Pictures of Kenya national parks
- Digital devices
- Maps of Kenya national parks
- Observation - Oral questions - Food web construction assessment - Presentations
12 1
Living Things and their Environment
Force and Energy
The interdependence of life - Role of decomposers in ecosystems
Curved mirrors - Types of curved mirrors
By the end of the lesson, the learner should be able to:

- Explain the role of decomposers in ecosystems
- Identify examples of decomposers
- Appreciate the importance of decomposers in nutrient cycling
- Discuss the role of decomposers in ecosystems
- Observe pictures/videos of decomposers in action
- Research on examples of decomposers
- Create a model of nutrient cycling showing the role of decomposers
What is the role of living and non-living factors in environments?
- Mentor Integrated Science Grade 9 (pg. 125)
- Pictures/videos of decomposers
- Digital devices
- Materials to create models
- Mentor Integrated Science (pg. 133)
- Shiny spoons
- Digital resources on curved mirrors
- Observation - Oral questions - Model assessment - Written assignments
12 2
Force and Energy
Curved mirrors - Terms associated with concave mirrors
Curved mirrors - Determining focal length of concave mirror
By the end of the lesson, the learner should be able to:

- Identify the terms associated with concave mirrors
- Describe the structure of a concave mirror
- Show interest in understanding the properties of concave mirrors
- Discuss the terms associated with concave mirrors (aperture, center of curvature, pole, principal axis, principal focus, focal length)
- Draw and label the parts of a concave mirror
- Watch animations explaining the terms associated with concave mirrors
How is the structure of the concave mirror important in image formation?
- Mentor Integrated Science (pg. 135)
- Digital resources
- Charts showing the structure of a concave mirror
- Mentor Integrated Science (pg. 137)
- Concave mirrors
- Rulers
- White screens or plain paper
- Mirror holders
- Observation - Drawings and labels - Written assignments
12 3-4
Force and Energy
Curved mirrors - Ray diagrams for concave mirrors
Curved mirrors - Image formation by concave mirrors (beyond C)
Curved mirrors - Image formation by concave mirrors (at C)
Curved mirrors - Image formation by concave mirrors (between C and F)
By the end of the lesson, the learner should be able to:

- Draw conventional ray diagrams for concave mirrors
- Identify the four special rays used in ray diagrams
- Show interest in the ray diagram approach to locate images

- Draw ray diagrams to locate images when objects are placed at C
- Describe the characteristics of images formed
- Show curiosity in investigating image formation
- Draw conventional ray diagrams of concave mirrors
- Identify and draw the four types of rays used in ray diagrams (ray through center of curvature, ray parallel to principal axis, ray through focus, ray through pole)
- Analyze how these rays help locate images
- Draw ray diagrams to locate images when objects are placed at the center of curvature
- Determine the characteristics of images formed
- Verify the results through practical observation
How do ray diagrams help in locating images formed by concave mirrors?
What are the characteristics of images formed when objects are placed at the center of curvature?
- Mentor Integrated Science (pg. 140)
- Plain paper
- Rulers
- Pencils
- Drawing instruments
- Mentor Integrated Science (pg. 143)
- Concave mirrors
- Digital resources
- Mentor Integrated Science (pg. 144)
- Concave mirrors
- Drawing instruments
- Digital resources
- Mentor Integrated Science (pg. 145)
- Observation - Drawing assessment - Written assignments
- Observation - Ray diagram assessment - Written descriptions
12 5
Force and Energy
Curved mirrors - Image formation by concave mirrors (at F)
Curved mirrors - Image formation by concave mirrors (between F and P)
By the end of the lesson, the learner should be able to:

- Draw ray diagrams to locate images when objects are placed at F
- Describe the characteristics of images formed
- Show interest in understanding special cases of image formation
- Draw ray diagrams to locate images when objects are placed at the principal focus
- Analyze what happens to reflected rays when objects are at F
- Discuss the concept of images formed at infinity
What happens to the image when an object is placed at the principal focus of a concave mirror?
- Mentor Integrated Science (pg. 147)
- Concave mirrors
- Drawing instruments
- Digital resources
- Mentor Integrated Science (pg. 148)
- Observation - Ray diagram assessment - Class discussion assessment
13 1
Force and Energy
Curved mirrors - Characteristics of images formed by concave mirrors
Curved mirrors - Locating images formed by concave mirrors experimentally
By the end of the lesson, the learner should be able to:

- Summarize characteristics of images formed by concave mirrors for different object positions
- Create a comprehensive table of image characteristics
- Value the systematic organization of scientific information
- Create a summary table of image characteristics for different object positions (at infinity, beyond C, at C, between C and F, at F, between F and P)
- Discuss the patterns and relationships observed
- Compare theoretical predictions with practical observations
How do image characteristics vary with object position for concave mirrors?
- Mentor Integrated Science (pg. 149)
- Concave mirrors
- Digital resources
- Previous ray diagrams
- Mentor Integrated Science (pg. 150)
- Mirror holders
- Screens
- Candles or light sources
- Rulers
- Observation - Table completion assessment - Written assignments
13 2
Force and Energy
Curved mirrors - Terms associated with convex mirrors
Curved mirrors - Ray diagrams for convex mirrors
By the end of the lesson, the learner should be able to:

- Identify the terms associated with convex mirrors
- Compare the structure of convex mirrors with concave mirrors
- Appreciate the differences between concave and convex mirrors
- Discuss the terms associated with convex mirrors (aperture, center of curvature, pole, principal axis, principal focus, focal length)
- Draw and label the parts of a convex mirror
- Compare terms used in convex mirrors with those in concave mirrors
How does the structure of convex mirrors differ from concave mirrors?
- Mentor Integrated Science (pg. 153)
- Convex mirrors
- Digital resources
- Charts showing the structure of convex mirrors
- Mentor Integrated Science (pg. 154)
- Plain paper
- Rulers
- Pencils
- Drawing instruments
- Observation - Drawings and labels - Written assignments
13 3-4
Force and Energy
Curved mirrors - Image formation by convex mirrors
Curved mirrors - Locating images formed by convex mirrors experimentally
Curved mirrors - Applications of curved mirrors (concave mirrors)
Curved mirrors - Applications of curved mirrors (convex mirrors)
By the end of the lesson, the learner should be able to:

- Draw ray diagrams to locate images formed by convex mirrors
- Describe the characteristics of images formed by convex mirrors
- Appreciate the consistent nature of images formed by convex mirrors

- Identify applications of concave mirrors in daily life
- Explain how the properties of concave mirrors make them suitable for specific applications
- Appreciate the practical importance of curved mirrors
- Draw ray diagrams to locate images formed by convex mirrors for different object positions
- Determine the characteristics of images formed
- Discuss why convex mirrors always form virtual, upright, and diminished images
- Research and discuss applications of concave mirrors (magnifying mirrors, dentist mirrors, solar concentrators, projectors)
- Explain how the image-forming properties of concave mirrors relate to their applications
- Demonstrate applications using actual mirrors where possible
What are the characteristics of images formed by convex mirrors?
What are the practical applications of concave mirrors in our daily lives?
- Mentor Integrated Science (pg. 156)
- Convex mirrors
- Drawing instruments
- Digital resources
- Mentor Integrated Science (pg. 159)
- Mirror holders
- Objects of various sizes
- Rulers
- Mentor Integrated Science (pg. 161)
- Concave mirrors
- Digital resources
- Examples of devices using concave mirrors
- Mentor Integrated Science (pg. 162)
- Convex mirrors
- Examples of devices using convex mirrors
- Observation - Ray diagram assessment - Written descriptions
- Observation - Oral presentations - Written assignments
13 5
Force and Energy
Curved mirrors - Applications of curved mirrors (parabolic reflectors)
Waves - Meaning of waves
Waves - Generating waves in nature
Waves - Applications of waves in everyday life
By the end of the lesson, the learner should be able to:

- Identify applications of parabolic reflectors in daily life
- Explain how the focusing properties of parabolic reflectors make them suitable for specific applications
- Show interest in advanced applications of curved mirrors
- Research and discuss applications of parabolic reflectors (solar cookers, car headlamps, photography equipment)
- Explain the special focusing properties of parabolic surfaces
- Demonstrate applications using models or examples
What are the practical applications of parabolic reflectors in our daily lives?
- Mentor Integrated Science (pg. 163)
- Digital resources
- Examples of devices using parabolic reflectors
- Mentor Integrated Science (pg. 166)
- Basin with water
- Small objects to drop in water
- Mentor Integrated Science (pg. 167)
- Rope
- Speakers
- Rice or sand
- Mentor Integrated Science (pg. 190)
- Examples of wave-based technologies
- Video clips on wave applications
- Observation - Oral presentations - Group projects
14

End term exams and closing


Your Name Comes Here


Download

Feedback