If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1-2 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Valencies of metals.
Valencie of non-metals. |
By the end of the
lesson, the learner
should be able to:
Recall valencies of metals among the first twenty elements in the periodic table. Recall valencies of non-metals among the first twenty elements in the periodic table. |
Q/A to review previous lesson;
Exposition; Guided discovery. |
Periodic table.
|
K.L.B. BOOK IIP 17
|
|
2 | 3 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Valencie of non-metals.
|
By the end of the
lesson, the learner
should be able to:
Recall valencies of non-metals among the first twenty elements in the periodic table. |
Q/A to review previous lesson;
Exposition; Guided discovery. |
Periodic table.
|
K.L.B. BOOK IIP 17
|
|
2 | 4 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Valencies of radicals.
|
By the end of the
lesson, the learner
should be able to:
Define a radical. Recall the valencies of common radicals. |
Exposition ? teacher defines a radical, gives examples of radicals and exposes their valencies.
Students draw a table of radicals and their valencies. |
text book
|
K.L.B. BOOK IIP 18
|
|
3 | 1-2 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Oxidation number.
Electronic configuration, ion formed, valency and oxidation number |
By the end of the
lesson, the learner
should be able to:
Define oxidation number. Predict oxidation numbers from position of elements in the periodic table. Relate electronic configuration, ion formed, valency and oxidation number of different elements. |
Q/A: Valencies.
Expose oxidation numbers of common ions. Students complete a table of ions and their oxidation numbers. Written exercise; Exercise review. |
The periodic table.
text book |
K.L.B. BOOK IIvP 18
K.L.B. BOOK IIP 18 |
|
3 | 3 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Electronic configuration, ion formed, valency and oxidation number
|
By the end of the
lesson, the learner
should be able to:
Relate electronic configuration, ion formed, valency and oxidation number of different elements. |
Written exercise;
Exercise review. |
text book
|
K.L.B. BOOK IIP 18
|
|
3 | 4 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Chemical formulae of compounds.
- Elements of equal valencies.
|
By the end of the
lesson, the learner
should be able to:
To derive the formulae of some compounds involving elements of equal valencies. |
Discuss formation of compounds such as NaCl, MgO.
|
text book
|
K.L.B. BOOK IIPP 19-20
|
|
4 | 1-2 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Chemical formulae of compounds.
-Elements of unequal valencies.
Chemical formulae of compounds. -Elements of variable valencies. |
By the end of the
lesson, the learner
should be able to:
To derive the formulae of some compounds involving elements of unequal valencies. To derive the formulae of some compounds involving elements of variable valencies. |
Discuss formation of compounds such as MgCl2
Al (NO3)3 Discuss formation of compounds such as -Copper (I) Oxide. -Copper (II) Oxide. -Iron (II) Sulphate. -Iron (III) Sulphate. |
text book
|
K.L.B. BOOK IIPP 19-20
K.L.B. BOOK IIP 20 |
|
4 | 3 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Chemical formulae of compounds.
-Elements of variable valencies.
|
By the end of the
lesson, the learner
should be able to:
To derive the formulae of some compounds involving elements of variable valencies. |
Discuss formation of compounds such as
-Copper (I) Oxide. -Copper (II) Oxide. -Iron (II) Sulphate. -Iron (III) Sulphate. |
text book
|
K.L.B. BOOK IIP 20
|
|
4 | 4 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Chemical equations.
|
By the end of the
lesson, the learner
should be able to:
To identify components of chemical equations. |
Review word equations;
Exposition of new concepts with probing questions; Brief discussion. |
text book
|
K.L.B. BOOK IIPP 21-23
|
|
5 | 1-2 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Balanced chemical equations.
Balanced chemical equations.(contd) |
By the end of the
lesson, the learner
should be able to:
To balance chemical equations correctly. |
Exposition;
Supervised practice. Supervised practice; Written exercise. |
text book
|
K.L.B. BOOK IIPP 24-25
K.L.B. BOOK IIPP 25-8 |
|
5 | 3 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Balanced chemical equations.(contd)
|
By the end of the
lesson, the learner
should be able to:
To balance chemical equations correctly. |
Supervised practice;
Written exercise. |
text book
|
K.L.B. BOOK IIPP 25-8
|
|
5 | 4 |
CHEMICAL FAMILIES
|
Chemical properties of alkaline earth metals.
Reaction of alkaline earth metals with oxygen.
|
By the end of the
lesson, the learner
should be able to:
To describe reaction of alkaline earth metals with oxygen |
Q/A: Review reactions of Mg, Ca, with oxygen.
The corresponding word and then chemical equations are then written and their correctness verified by the teacher. |
text book
|
K.L.B. BOOK IIP. 38
|
|
6 | 1-2 |
CHEMICAL FAMILIES
|
Chemical properties of alkaline earth metals.
Reaction of alkaline earth metals with water.
Reaction of alkaline earth metals with chlorine gas. |
By the end of the
lesson, the learner
should be able to:
To describe reaction of alkaline earth metals with water. To write balanced equations for reaction of alkaline earth metals with chlorine gas. |
Q/A: Review reaction of metals with water.
Writing down word and balanced chemical equations for the reactions. Deduce and discuss the order of reactivity down the group. Teacher demonstration- Reaction of sodium with chlorine in a fume chamber. Q/A: Students to predict a similar reaction between potassium and chlorine. Word and balanced chemical equations for various reactions. Supervised practice. |
Some alkaline earth metals.
Sodium, chlorine. |
K.L.B. BOOK IIP. 39
K.L.B. BOOK II P. 41 |
|
6 | 3 |
CHEMICAL FAMILIES
|
Reaction of alkaline earth metals with chlorine gas.
|
By the end of the
lesson, the learner
should be able to:
To write balanced equations for reaction of alkaline earth metals with chlorine gas. |
Teacher demonstration- Reaction of sodium with chlorine in a fume chamber.
Q/A: Students to predict a similar reaction between potassium and chlorine. Word and balanced chemical equations for various reactions. Supervised practice. |
Sodium, chlorine.
|
K.L.B. BOOK II P. 41
|
|
6 | 4 |
CHEMICAL FAMILIES
|
Reaction of alkaline earth metals with dilute acids.
|
By the end of the
lesson, the learner
should be able to:
To write balanced equations for reactions of alkaline earth metals with dilute acids. |
Changing word to chemical equations.
Supervised practice. |
revision book
|
K.L.B. BOOK II PP. 43
|
|
7 | 1-2 |
CHEMICAL FAMILIES
|
Chemical formulae of alkaline earth metals.
Uses of some alkaline earth metals and their compounds. |
By the end of the
lesson, the learner
should be able to:
Write chemical formulae for compounds of alkaline earth metals. Explain formation of hydroxides, oxides and chlorides of alkaline earth metals. State uses of alkaline earth metals. |
Exercise: Completing a table of hydroxides, oxides and chlorides of alkaline earth metals.
Discuss combination of ions of alkaline earth metals with anions. Descriptive approach: Teacher elucidates uses of alkaline earth metals. |
text book
|
K.L.B. BOOK II PP. 45-47
K.L.B. BOOK II PP. 45-47 |
|
7 | 3 |
CHEMICAL FAMILIES
|
Halogens.
Physical properties of halogens.
|
By the end of the
lesson, the learner
should be able to:
Identify halogens in the periodic table. Give examples of halogens. Identify physical states of halogens. |
Teacher demonstration: - To examine electrical properties of iodine, solubility in water of chlorine.
|
Iodine crystals, electrical wire, a bulb.
|
KLB BK II
P. 47 |
|
7 | 4 |
CHEMICAL FAMILIES
|
Comparative physical properties of halogens.
|
By the end of the
lesson, the learner
should be able to:
To state and explain the trends in physical properties of halogens. |
Examine a comparative table of physical properties of halogens.
Discuss the deductions made from the table. |
text book
|
K.L.B. BOOK II P. 47
|
|
8 | 1-2 |
CHEMICAL FAMILIES
|
Chemical properties of halogens.
Equations of reaction of halogens with metals. |
By the end of the
lesson, the learner
should be able to:
To describe laboratory preparation of chlorine gas. To describe reaction of halogens with metals. To write balanced chemical equations of reactions involving halogens. |
Teacher demonstration: - preparation of chlorine gas.
Reaction of chlorine and iron wool. Reaction of bromine and iron wool. Reaction of iodine and iron wool. Observe the rate of these reactions; hence deduce order of their reactivity of halogens. Re-write word equations as chemical equations then balance them. Supervised practice. |
Chlorine, iron wool, bromine.
text book |
K.L.B. BOOK IIPP. 48-50
K.L.B. BOOK II P. 50 |
|
8 | 3 |
CHEMICAL FAMILIES
|
Reaction of halogens with water.
|
By the end of the
lesson, the learner
should be able to:
To describe reaction of halogens with water and the results obtained. |
Bubbling chlorine gas through water.
Carry out litmus test for the water. Explain the observations. |
Chlorine gas, litmus papers.
|
K.L.B. BOOK II P. 51
|
|
8 | 4 |
CHEMICAL FAMILIES
|
Some uses of halogens and their compounds.
|
By the end of the
lesson, the learner
should be able to:
To state uses of halogens and their compounds. |
Teacher elucidates uses of halogens and their compounds.
|
text book
|
K.L.B. BOOK II pp 52
|
|
9 |
Midterm break |
|||||||
10 | 1-2 |
CHEMICAL FAMILIES
STRUCTURE & BONDING |
Noble Gases.
Comparative physical properties of noble gases.
Uses of noble gases. Chemical bonds. Ionic bond. Ionic bond representation. |
By the end of the
lesson, the learner
should be able to:
To describe physical properties of noble gases. To explain physical properties of noble gases. Describe role of valence electrons in determining chemical bonding. Explain formation of ionic bonding. |
Make A comparative analysis of tabulated physical properties of noble gases.
Q/A: Review valence electrons of atoms of elements in groups I, II, III, VII and VIII. Q/A: Review group I and group VII elements. Discuss formation of ionic bond. |
text book
text book Chart- dot and cross diagrams. Models for bonding. |
K.L.B. BOOK IIPP. 52-53
K.L.B. BOOK IIP54 PP 57-58 |
|
10 | 3 |
STRUCTURE & BONDING
|
Grant ionic structures.
|
By the end of the
lesson, the learner
should be able to:
Describe the crystalline ionic compound. Give examples of ionic substances. |
Discuss the group ionic structures of NaCl.
Teacher gives examples of other ionic substances: KNO3, potassium bromide, Ca (NO3)2, sodium iodide. |
Giant sodium chloride model.
|
K.L.B. BOOK II PP 56-58
|
|
10 | 4 |
STRUCTURE & BONDING
|
Physical properties of ionic compounds.
Covalent bond. |
By the end of the
lesson, the learner
should be able to:
Describe physical properties of ionic compounds. Explain the differences in the physical properties of ionic compounds. |
Analyse tabulated comparative physical properties of ionic compounds.
Teacher asks probing questions. |
text book
|
K.L.B. BOOK IIPP 58-59
|
|
11 | 1-2 |
STRUCTURE & BONDING
|
Co-ordinate bond.
Molecular structure. Trend in physical properties of molecular structures. |
By the end of the
lesson, the learner
should be able to:
To describe the co-ordinate bond To represent co-ordinate bond diagrammatically. To describe van- der -waals forces. To explain the trend in physical properties of molecular structures. |
Exposition- teacher explains the nature of co-ordinate bond.
Students represent co-ordinate bond diagrammatically. Discuss comparative physical properties of substances. exhibiting molecular structure. Explain variation in the physical properties. |
text book
Sugar, naphthalene, iodine rhombic sulphur. |
K.L.B. BOOK II P 65
K.L.B. BOOK IIP 65 |
|
11 | 3 |
STRUCTURE & BONDING
|
Giant atomic structure in diamond.
Giant atomic structure in graphite. |
By the end of the
lesson, the learner
should be able to:
To describe giant atomic structure in diamond. To state uses of diamond. |
Diagrammatic representation of diamond.
Discuss uses of diamond. |
Diagrams in textbooks.
|
K.L.B. BOOK II P 69
|
|
11 | 4 |
STRUCTURE & BONDING
|
Metallic bond.
Uses of some metals.
|
By the end of the
lesson, the learner
should be able to:
To describe mutual electronic forces between electrons and nuclei. To describe metallic bond. To compare physical properties of metals. To state uses of some metals. |
Discussion:
Detailed analysis of comparative physical properties of metals and their uses. Probing questions & brief explanations. |
text book
|
K.L.B. BOOK IIP 70
|
|
12 | 1-2 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
|
Physical properties of elements in periods.
Physical properties of elements in period 3. Chemical properties of elements in period 3. |
By the end of the
lesson, the learner
should be able to:
To compare electrical conductivity of elements in period 3 To compare other physical properties of elements across period 3. |
Group experiments- Construct electrical circuits incorporating a magnesium ribbon, then aluminum foil, then sulphur in turns.
The brightness of the bulb is noted in each case. Discuss the observations in terms of delocalised electrons. Analyse comparative physical properties presented in form of a table. Explain the trend in the physical properties given. |
The periodic table.
|
K.L.B. BOOK IIP. 76
K.L.B. BOOK II P. 77 |
|
12 | 3 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
|
Chemical properties of elements in the third period.
Oxides of period 3 elements. |
By the end of the
lesson, the learner
should be able to:
To compare reactions of elements in period 3 with water |
Q/A: Review reaction of sodium, Mg, chlorine, with water.
Infer that sodium is most reactive metal; non-metals do not react with water. |
The periodic table.
|
K.L.B. BOOK II PP. 80-81
|
|
12 | 4 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
|
Chlorides of period 3 elements.
|
By the end of the
lesson, the learner
should be able to:
To explain chemical behavior of their chlorides. To describe hydrolysis reaction. |
Comparative analysis, discussion and explanation.
|
The periodic table.
|
K.L.B. BOOK II PP. 77-78
|
Your Name Comes Here