Home






SCHEME OF WORK
Chemistry
Form 2 2025
TERM II
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1

SCHOOL OPENING AND REVISION

2 1
CHEMICAL FAMILIES
Alkaline Earth metals Atomic and ionic radii of alkaline earth metals.
By the end of the lesson, the learner should be able to:
Identify alkaline earth metals.

State changes in atomic and ionic radii of alkaline earth metals.
Q/A: Elements of group I and their electron configuration.
Examine a table of elements, their symbols and atomic & ionic radii.
Make deductions from the table.
Some alkaline earth metals.
K.L.B. BOOK II pp 34
2 2-3
CHEMICAL FAMILIES
Physical properties of alkaline earth metals.
By the end of the lesson, the learner should be able to:
State and explain trends in physical properties of alkaline earth metals.
Examine a table showing comparative physical properties of Be, Mg, Ca.
Q/A: Teacher asks probing questions as students refer to the table for answers.
Detailed discussion of physical properties of alkaline earth metals.
Some alkaline earth metals.
K.L.B. BOOK II P. 35
2 4
CHEMICAL FAMILIES
Electrical properties of alkaline earth metals.
By the end of the lesson, the learner should be able to:
To describe electrical properties of alkaline earth metals.
Teacher demonstration: -
To show alkaline metals are good conductors of electric charge.
Alkaline earth metals.
K.L.B. BOOK IIP. 37
3 1
CHEMICAL FAMILIES
Chemical properties of alkaline earth metals. Reaction of alkaline earth metals with oxygen.
By the end of the lesson, the learner should be able to:
To describe reaction of alkaline earth metals with oxygen
Q/A: Review reactions of Mg, Ca, with oxygen.
The corresponding word and then chemical equations are then written and their correctness verified by the teacher.
text book
K.L.B. BOOK IIP. 38
3

OPENER CAT

4 1
CHEMICAL FAMILIES
Chemical properties of alkaline earth metals. Reaction of alkaline earth metals with water.
By the end of the lesson, the learner should be able to:
To describe reaction of alkaline earth metals with water.
Q/A: Review reaction of metals with water.
Writing down word and balanced chemical equations for the reactions.
Deduce and discuss the order of reactivity down the group.
Some alkaline earth metals.
K.L.B. BOOK IIP. 39
4 2-3
CHEMICAL FAMILIES
Reaction of alkaline earth metals with chlorine gas.
By the end of the lesson, the learner should be able to:
To write balanced equations for reaction of alkaline earth metals with chlorine gas.
Teacher demonstration- Reaction of sodium with chlorine in a fume chamber.
Q/A: Students to predict a similar reaction between potassium and chlorine.
Word and balanced chemical equations for various reactions.
Supervised practice.
Sodium, chlorine.
K.L.B. BOOK II P. 41
4 4
CHEMICAL FAMILIES
Reaction of alkaline earth metals with dilute acids.
By the end of the lesson, the learner should be able to:
To write balanced equations for reactions of alkaline earth metals with dilute acids.
Changing word to chemical equations.
Supervised practice.
revision book
K.L.B. BOOK II PP. 43
5 1
CHEMICAL FAMILIES
Chemical formulae of alkaline earth metals.
By the end of the lesson, the learner should be able to:
Write chemical formulae for compounds of alkaline earth metals.
Explain formation of hydroxides, oxides and chlorides of alkaline earth metals.
Exercise: Completing a table of hydroxides, oxides and chlorides of alkaline earth metals.
Discuss combination of ions of alkaline earth metals with anions.
text book
K.L.B. BOOK II PP. 45-47
5 2
CHEMICAL FAMILIES
Uses of some alkaline earth metals and their compounds.
By the end of the lesson, the learner should be able to:
State uses of alkaline earth metals.
Descriptive approach: Teacher elucidates uses of alkaline earth metals.
text book
K.L.B. BOOK II PP. 45-47
5 2-3
CHEMICAL FAMILIES
Uses of some alkaline earth metals and their compounds.
Halogens. Physical properties of halogens.
By the end of the lesson, the learner should be able to:
State uses of alkaline earth metals.
Identify halogens in the periodic table.
Give examples of halogens.
Identify physical states of halogens.
Descriptive approach: Teacher elucidates uses of alkaline earth metals.
Teacher demonstration: - To examine electrical properties of iodine, solubility in water of chlorine.
text book
Iodine crystals, electrical wire, a bulb.
K.L.B. BOOK II PP. 45-47
KLB BK II
P. 47
5 4
CHEMICAL FAMILIES
Comparative physical properties of halogens.
Chemical properties of halogens.
By the end of the lesson, the learner should be able to:
To state and explain the trends in physical properties of halogens.
Examine a comparative table of physical properties of halogens.
Discuss the deductions made from the table.
text book
Chlorine, iron wool, bromine.
K.L.B. BOOK II P. 47
6 1
CHEMICAL FAMILIES
Equations of reaction of halogens with metals.
By the end of the lesson, the learner should be able to:
To write balanced chemical equations of reactions involving halogens.
Re-write word equations as chemical equations then balance them.
Supervised practice.
text book
K.L.B. BOOK II P. 50
6 2-3
CHEMICAL FAMILIES
Equations of reaction of halogens with metals.
Reaction of halogens with water.
By the end of the lesson, the learner should be able to:
To write balanced chemical equations of reactions involving halogens.
To describe reaction of halogens with water and the results obtained.
Re-write word equations as chemical equations then balance them.
Supervised practice.
Bubbling chlorine gas through water.
Carry out litmus test for the water.
Explain the observations.
text book
Chlorine gas, litmus papers.
K.L.B. BOOK II P. 50
K.L.B. BOOK II P. 51
6 4
CHEMICAL FAMILIES
Some uses of halogens and their compounds.
By the end of the lesson, the learner should be able to:
To state uses of halogens and their compounds.
Teacher elucidates uses of halogens and their compounds.
text book
K.L.B. BOOK II pp 52
7 1
CHEMICAL FAMILIES
Noble Gases. Comparative physical properties of noble gases.
Uses of noble gases.
By the end of the lesson, the learner should be able to:
To describe physical properties of noble gases.
To explain physical properties of noble gases.
Make A comparative analysis of tabulated physical properties of noble gases.
text book
  K.L.B. BOOK IIPP. 52-53
7 2-3
STRUCTURE & BONDING
Chemical bonds. Ionic bond.
Ionic bond representation.
Grant ionic structures.
Physical properties of ionic compounds.
By the end of the lesson, the learner should be able to:
Describe role of valence electrons in determining chemical bonding.


Explain formation of ionic bonding.
Describe the crystalline ionic compound.
Give examples of ionic substances.
Q/A: Review valence electrons of atoms of elements in groups I, II, III, VII and VIII.
Q/A: Review group I and group VII elements.
Discuss formation of ionic bond.

Discuss the group ionic structures of NaCl.
Teacher gives examples of other ionic substances: KNO3, potassium bromide, Ca (NO3)2, sodium iodide.
text book
Chart- dot and cross diagrams.
Models for bonding.
Giant sodium chloride model.
text book
K.L.B. BOOK IIP54




PP 57-58
K.L.B. BOOK II PP 56-58
7 4
STRUCTURE & BONDING
Covalent bond.
Co-ordinate bond.
By the end of the lesson, the learner should be able to:
Explain the formation of covalent bond
Use dot and cross diagrams to represent covalent bond.
Exposition: Shared pair of electrons in a hydrogen molecule, H2O, NH3, Cl2, and CO2.
Drawing of dot-and-cross diagrams of covalent bonds.
text book
K.L.B. BOOK II PP 60-63
8 1
STRUCTURE & BONDING
Molecular structure.
Trend in physical properties of molecular structures.
By the end of the lesson, the learner should be able to:
To describe the molecular structure.
To give examples of substance exhibiting molecular structure
Discussion ? To explain formation of the giant structure and give examples of substance exhibiting molecular structure.
text book
Sugar, naphthalene, iodine rhombic sulphur.
K.L.B. BOOK IIP 65
8 2-3
STRUCTURE & BONDING
Giant atomic structure in diamond.
Giant atomic structure in graphite.
Metallic bond. Uses of some metals.
By the end of the lesson, the learner should be able to:
To describe giant atomic structure in diamond.
To state uses of diamond.
To describe giant atomic structure in graphite.
To state uses of graphite.
Diagrammatic representation of diamond.
Discuss uses of diamond.
Diagrammatic representation of graphite.

Discuss uses of graphite.
Diagrams in textbooks.
Diagrams in textbooks.
text book
K.L.B. BOOK II P 69
K.L.B. BOOK II pp 69
8 4
PROPERTIES AND TRENDS ACROSS PERIOD THREE
Physical properties of elements in periods.
By the end of the lesson, the learner should be able to:




To compare electrical conductivity of elements in period 3
Group experiments- Construct electrical circuits incorporating a magnesium ribbon, then aluminum foil, then sulphur in turns.
The brightness of the bulb is noted in each case.
Discuss the observations in terms of delocalised electrons.
The periodic table.
K.L.B. BOOK IIP. 76
9

MID TERM BREAK

10 1
PROPERTIES AND TRENDS ACROSS PERIOD THREE
Physical properties of elements in period 3.
By the end of the lesson, the learner should be able to:
To compare other physical properties of elements across period 3.
Analyse comparative physical properties presented in form of a table.
Explain the trend in the physical properties given.
The periodic table.
K.L.B. BOOK II P. 77
10 2-3
PROPERTIES AND TRENDS ACROSS PERIOD THREE
Chemical properties of elements in period 3.
Chemical properties of elements in the third period.
Oxides of period 3 elements.
Chlorides of period 3 elements.
By the end of the lesson, the learner should be able to:
To compare reactions of elements in period 3 with oxygen.
To identify bonds across elements in period 3.
To explain chemical behavior of their oxide.
Q/A: Products of reactions of Na, Mg, Al, P, & S with oxygen.
Discuss the trend in their reactivity; identify basic and acidic oxides.
Exercise ? balanced chemical equations for the above reactions.

Comparative analysis, discussion and explanation.
The periodic table.
K.L.B. BOOK II PP. 79-80
K.L.B. BOOK II P. 84
10 4
SALTS
Types of salts.
By the end of the lesson, the learner should be able to:
Define a salt.
Describe various types of salts and give several examples in each case.
Descriptive approach. Teacher exposes new concepts.
text book
K.L.B. BOOK II P. 91
11 1
SALTS
Solubility of salts in water.
By the end of the lesson, the learner should be able to:
To test solubility of various salts in cold water/warm water.
Class experiments- Dissolve salts in 5 cc of water.
Record the solubility in a table,
Analyse the results.
Sulphates, chlorides, nitrates, carbonates of various metals.



K.L.B. BOOK II PP. 92-93
11 2-3
SALTS
Solubility of bases in water.
Methods of preparing various salts.
By the end of the lesson, the learner should be able to:
To test solubility of various bases in water.
To carry out litmus test on the resulting solutions.
To describe various methods of preparing some salts.
Class experiments- Dissolve salts in 5cc of water.
Record the solubility in a table,
Carry out litmus tests.
Discuss the results.


Experimental and descriptive treatments of preparation of salts e.g. ZnSO4, CuSO4, NaCl and Pb(NO3)2.

Oxides, hydroxides, of various metals, litmus papers.
CuO, H2SO4, HCl, NaOH, PbCO3, dil HNO3.
K.L.B. BOOK IIPP. 94-95
K.L.B. BOOK II pp96
11 4
SALTS
Direct synthesis of a salts.
By the end of the lesson, the learner should be able to:
To describe direct synthesis of a salt.
To write balanced equations for the reactions.
Group experiments- preparation of iron (II) sulphide by direct synthesis.
Give other examples of salts prepared by direct synthesis.
Students write down corresponding balanced equations.

Iron,
Sulphur
K.L.B. BOOK II P. 104
12

END TERM EXAM

13 1
SALTS
Ionic equations.
Effects of heat on carbonates.
By the end of the lesson, the learner should be able to:
To identify spectator ions in double decomposition reactions.
To write ionic equations correctly.
Q/A: Ions present in given reactants.
Deduce the products of double decomposition reactions.
Give examples of equations.
Supervised practice.
PbNO3, MgSO4 solutions.
Various carbonates.
K.L.B. BOOK II
13 2-3
SALTS
Effects of heat on nitrates.
Effects of heat on sulphates.
Hygroscopy, Deliquescence and Efflorescence.
Uses of salts.
By the end of the lesson, the learner should be able to:
To state effects of heat on nitrates.
To predict products resulting from heating metal nitrates.
To define hygroscopic deliquescent and efflorescent salts.
To give examples of hygroscopic deliquescent and efflorescent salts.
Group experiments- To investigate effects of heat on various metal nitrates.
Observe various colour changes before, during and after heating.
Write equations for the reactions.

Prepare a sample of various salts.
Expose them to the atmosphere overnight.
Students classify the salts as hygroscopic, deliquescent and / or efflorescent.
Common metal nitrates.
Common sulphates.
K.L.B. BOOK II PP. 110-111
K.L.B. BOOK II P. 114
13 4
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
Electrical conductivity.
By the end of the lesson, the learner should be able to:
To test for electrical conductivities of substances.
Group experiments- to identify conductors and non-conductors.
Explain the difference in (non) conductivities.
Various solids, bulb, battery, & wires.
K.L.B. BOOK II PP. 118-119
14

SCHOOL CLOSING


Your Name Comes Here


Download

Feedback