Home






SCHEME OF WORK
Chemistry
Form 2 2025
TERM II
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 1
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Chemical formulae of compounds. -Elements of unequal valencies.
By the end of the lesson, the learner should be able to:
To derive the formulae of some compounds involving elements of unequal valencies.
Discuss formation of compounds such as MgCl2
Al (NO3)3
text book
K.L.B. BOOK IIPP 19-20
2 2-3
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Chemical formulae of compounds. -Elements of variable valencies.
Chemical equations.
By the end of the lesson, the learner should be able to:
To derive the formulae of some compounds involving elements of variable valencies.
To identify components of chemical equations.
Discuss formation of compounds such as
-Copper (I) Oxide.
-Copper (II) Oxide.
-Iron (II) Sulphate.
-Iron (III) Sulphate.

Review word equations;
Exposition of new concepts with probing questions;
Brief discussion.
text book
K.L.B. BOOK IIP 20
K.L.B. BOOK IIPP 21-23
2 4
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Balanced chemical equations.
By the end of the lesson, the learner should be able to:
To balance chemical equations correctly.
Exposition;
Supervised practice.
text book
K.L.B. BOOK IIPP 24-25
3 1
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Balanced chemical equations.(contd)
By the end of the lesson, the learner should be able to:
To balance chemical equations correctly.
Supervised practice;
Written exercise.
text book
K.L.B. BOOK IIPP 25-8
3 2-3
CHEMICAL FAMILIES
Alkali metals. Atomic and ionic radii of alkali metals
Ionisation energy of alkali metals.
By the end of the lesson, the learner should be able to:





Identify alkali metals.
State changes in atomic and ionic radii of alkali metals.

State changes in number of energy levels and ionisation energy of alkali metals.

Q/A to reviews elements of group I and their electronic configuration.
Examine a table of elements, their symbols and atomic & ionic radii.
Discussion & making deductions from the table.
Examine a table of elements, number of energy levels and their ionization energy.
Discuss the trend deduced from the table.
The periodic
text book
K.L.B. BOOK IIPP 28-29
3 4
CHEMICAL FAMILIES
Physical properties of alkali metals.
By the end of the lesson, the learner should be able to:
State and explain trends in physical properties of alkali metals.
Examine a table showing comparative physical properties of Li, Na, and K.
Q/A: Teacher asks probing questions as students refer to the table for answers.
Detailed discussion on physical properties of alkali metals.

Chart ? comparative properties of Li, Na, K.
K.L.B. BOOK IIPP 30-31
4 1
CHEMICAL FAMILIES
Chemical properties of alkali metals.
By the end of the lesson, the learner should be able to:
To describe reaction of alkali metals with water.
Q/A: Review reaction of metals with water.
Writing down chemical equations for the reactions.
Deduce and discuss the order of reactivity down the group.
text book
K.L.B. BOOK IIP. 32
4 2-3
CHEMICAL FAMILIES
Reaction of alkali metals with chlorine gas.
Compounds of alkali metals.
By the end of the lesson, the learner should be able to:
To write balanced equations for reaction of alkali metals with chlorine gas.
Write chemical formulae for compounds of alkali metals.
Explain formation of hydroxides, oxides and chlorides of alkali metals.
Teacher demonstration- reaction of sodium with chlorine in a fume chamber.
Q/A: Students to predict a similar reaction between potassium and chlorine.
Word and balanced chemical equations for various reactions.


Exercise: Completing a table of hydroxides, oxides and chlorides of alkali metals.
Discuss combination of ions of alkali metals with anions.
Sodium, chlorine.
text book
K.L.B. BOOK IIP. 33
K.L.B. BOOK II pp 33
4 4
CHEMICAL FAMILIES
Compounds of alkali metals.
By the end of the lesson, the learner should be able to:
Write chemical formulae for compounds of alkali metals.
Explain formation of hydroxides, oxides and chlorides of alkali metals.
Exercise: Completing a table of hydroxides, oxides and chlorides of alkali metals.
Discuss combination of ions of alkali metals with anions.
text book
K.L.B. BOOK II pp 33
5 1
CHEMICAL FAMILIES
Uses of alkali metals.
By the end of the lesson, the learner should be able to:
State uses of alkali metals.
Descriptive approach: Teacher elucidates uses of alkali metals.
text book
K.L.B. BOOK II pp 34
5 2-3
CHEMICAL FAMILIES
Alkaline Earth metals Atomic and ionic radii of alkaline earth metals.
Physical properties of alkaline earth metals.
By the end of the lesson, the learner should be able to:
Identify alkaline earth metals.

State changes in atomic and ionic radii of alkaline earth metals.
State and explain trends in physical properties of alkaline earth metals.
Q/A: Elements of group I and their electron configuration.
Examine a table of elements, their symbols and atomic & ionic radii.
Make deductions from the table.

Examine a table showing comparative physical properties of Be, Mg, Ca.
Q/A: Teacher asks probing questions as students refer to the table for answers.
Detailed discussion of physical properties of alkaline earth metals.
Some alkaline earth metals.
K.L.B. BOOK II pp 34
K.L.B. BOOK II P. 35
5 4
CHEMICAL FAMILIES
Electrical properties of alkaline earth metals.
By the end of the lesson, the learner should be able to:
To describe electrical properties of alkaline earth metals.
Teacher demonstration: -
To show alkaline metals are good conductors of electric charge.
Alkaline earth metals.
K.L.B. BOOK IIP. 37
6 1
CHEMICAL FAMILIES
Chemical properties of alkaline earth metals. Reaction of alkaline earth metals with oxygen.
By the end of the lesson, the learner should be able to:
To describe reaction of alkaline earth metals with oxygen
Q/A: Review reactions of Mg, Ca, with oxygen.
The corresponding word and then chemical equations are then written and their correctness verified by the teacher.
text book
K.L.B. BOOK IIP. 38
6 2-3
CHEMICAL FAMILIES
Chemical properties of alkaline earth metals. Reaction of alkaline earth metals with water.
Reaction of alkaline earth metals with chlorine gas.
By the end of the lesson, the learner should be able to:
To describe reaction of alkaline earth metals with water.
To write balanced equations for reaction of alkaline earth metals with chlorine gas.
Q/A: Review reaction of metals with water.
Writing down word and balanced chemical equations for the reactions.
Deduce and discuss the order of reactivity down the group.

Teacher demonstration- Reaction of sodium with chlorine in a fume chamber.
Q/A: Students to predict a similar reaction between potassium and chlorine.
Word and balanced chemical equations for various reactions.
Supervised practice.
Some alkaline earth metals.

Sodium, chlorine.
K.L.B. BOOK IIP. 39
K.L.B. BOOK II P. 41
6 4
CHEMICAL FAMILIES
Reaction of alkaline earth metals with dilute acids.
By the end of the lesson, the learner should be able to:
To write balanced equations for reactions of alkaline earth metals with dilute acids.
Changing word to chemical equations.
Supervised practice.
revision book
K.L.B. BOOK II PP. 43
7 1
CHEMICAL FAMILIES
Chemical formulae of alkaline earth metals.
By the end of the lesson, the learner should be able to:
Write chemical formulae for compounds of alkaline earth metals.
Explain formation of hydroxides, oxides and chlorides of alkaline earth metals.
Exercise: Completing a table of hydroxides, oxides and chlorides of alkaline earth metals.
Discuss combination of ions of alkaline earth metals with anions.
text book
K.L.B. BOOK II PP. 45-47
7 2-3
CHEMICAL FAMILIES
Uses of some alkaline earth metals and their compounds.
Halogens. Physical properties of halogens.
Comparative physical properties of halogens.
Chemical properties of halogens.
By the end of the lesson, the learner should be able to:
State uses of alkaline earth metals.
To state and explain the trends in physical properties of halogens.
Descriptive approach: Teacher elucidates uses of alkaline earth metals.
Examine a comparative table of physical properties of halogens.
Discuss the deductions made from the table.
text book
Iodine crystals, electrical wire, a bulb.
text book
Chlorine, iron wool, bromine.
K.L.B. BOOK II PP. 45-47
K.L.B. BOOK II P. 47
7 4
CHEMICAL FAMILIES
Equations of reaction of halogens with metals.
By the end of the lesson, the learner should be able to:
To write balanced chemical equations of reactions involving halogens.
Re-write word equations as chemical equations then balance them.
Supervised practice.
text book
K.L.B. BOOK II P. 50
8 1
CHEMICAL FAMILIES
Reaction of halogens with water.
By the end of the lesson, the learner should be able to:
To describe reaction of halogens with water and the results obtained.
Bubbling chlorine gas through water.
Carry out litmus test for the water.
Explain the observations.
Chlorine gas, litmus papers.
K.L.B. BOOK II P. 51
8 2
CHEMICAL FAMILIES
Some uses of halogens and their compounds.
By the end of the lesson, the learner should be able to:
To state uses of halogens and their compounds.
Teacher elucidates uses of halogens and their compounds.
text book
K.L.B. BOOK II pp 52
8 2-3
CHEMICAL FAMILIES
Some uses of halogens and their compounds.
Noble Gases. Comparative physical properties of noble gases.
Uses of noble gases.
By the end of the lesson, the learner should be able to:
To state uses of halogens and their compounds.
To describe physical properties of noble gases.
To explain physical properties of noble gases.
Teacher elucidates uses of halogens and their compounds.
Make A comparative analysis of tabulated physical properties of noble gases.
text book
K.L.B. BOOK II pp 52
  K.L.B. BOOK IIPP. 52-53
8 4
STRUCTURE & BONDING
Chemical bonds. Ionic bond.
Ionic bond representation.
Grant ionic structures.
By the end of the lesson, the learner should be able to:
Describe role of valence electrons in determining chemical bonding.


Explain formation of ionic bonding.
Q/A: Review valence electrons of atoms of elements in groups I, II, III, VII and VIII.
Q/A: Review group I and group VII elements.
Discuss formation of ionic bond.
text book
Chart- dot and cross diagrams.
Models for bonding.
Giant sodium chloride model.
K.L.B. BOOK IIP54




PP 57-58
9 1
STRUCTURE & BONDING
Physical properties of ionic compounds.
Covalent bond.
By the end of the lesson, the learner should be able to:
Describe physical properties of ionic compounds.
Explain the differences in the physical properties of ionic compounds.
Analyse tabulated comparative physical properties of ionic compounds.

Teacher asks probing questions.
text book
K.L.B. BOOK IIPP 58-59
9 2
STRUCTURE & BONDING
Co-ordinate bond.
Molecular structure.
By the end of the lesson, the learner should be able to:
To describe the co-ordinate bond
To represent co-ordinate bond diagrammatically.
Exposition- teacher explains the nature of co-ordinate bond.
Students represent co-ordinate bond diagrammatically.
text book
K.L.B. BOOK II P 65
9

Half term

10 1
STRUCTURE & BONDING
Trend in physical properties of molecular structures.
Giant atomic structure in diamond.
By the end of the lesson, the learner should be able to:
To describe van- der -waals forces.
To explain the trend in physical properties of molecular structures.
Discuss comparative physical properties of substances. exhibiting molecular structure.
Explain variation in the physical properties.
Sugar, naphthalene, iodine rhombic sulphur.
Diagrams in textbooks.
K.L.B. BOOK IIP 65
10 2-3
STRUCTURE & BONDING
PROPERTIES AND TRENDS ACROSS PERIOD THREE
Giant atomic structure in graphite.
Metallic bond. Uses of some metals.
Physical properties of elements in periods.
By the end of the lesson, the learner should be able to:
To describe giant atomic structure in graphite.
To state uses of graphite.




To compare electrical conductivity of elements in period 3
Diagrammatic representation of graphite.

Discuss uses of graphite.
Group experiments- Construct electrical circuits incorporating a magnesium ribbon, then aluminum foil, then sulphur in turns.
The brightness of the bulb is noted in each case.
Discuss the observations in terms of delocalised electrons.
Diagrams in textbooks.
text book
The periodic table.
K.L.B. BOOK II pp 69
K.L.B. BOOK IIP. 76
10 4
PROPERTIES AND TRENDS ACROSS PERIOD THREE
Physical properties of elements in period 3.
Chemical properties of elements in period 3.
Chemical properties of elements in the third period.
By the end of the lesson, the learner should be able to:
To compare other physical properties of elements across period 3.
Analyse comparative physical properties presented in form of a table.
Explain the trend in the physical properties given.
The periodic table.
K.L.B. BOOK II P. 77
11 1
PROPERTIES AND TRENDS ACROSS PERIOD THREE
Oxides of period 3 elements.
Chlorides of period 3 elements.
By the end of the lesson, the learner should be able to:
To identify bonds across elements in period 3.
To explain chemical behavior of their oxide.
Comparative analysis, discussion and explanation.
The periodic table.
K.L.B. BOOK II P. 84
11 2-3
SALTS
Types of salts.
Solubility of salts in water.
Solubility of bases in water.
By the end of the lesson, the learner should be able to:
Define a salt.
Describe various types of salts and give several examples in each case.
To test solubility of various salts in cold water/warm water.
Descriptive approach. Teacher exposes new concepts.
Class experiments- Dissolve salts in 5 cc of water.
Record the solubility in a table,
Analyse the results.
text book
Sulphates, chlorides, nitrates, carbonates of various metals.
Oxides, hydroxides, of various metals, litmus papers.
K.L.B. BOOK II P. 91
K.L.B. BOOK II PP. 92-93
11 4
SALTS
Methods of preparing various salts.
By the end of the lesson, the learner should be able to:
To describe various methods of preparing some salts.
Experimental and descriptive treatments of preparation of salts e.g. ZnSO4, CuSO4, NaCl and Pb(NO3)2.

CuO, H2SO4, HCl, NaOH, PbCO3, dil HNO3.
K.L.B. BOOK II pp96
12 1
SALTS
Direct synthesis of a salts.
By the end of the lesson, the learner should be able to:
To describe direct synthesis of a salt.
To write balanced equations for the reactions.
Group experiments- preparation of iron (II) sulphide by direct synthesis.
Give other examples of salts prepared by direct synthesis.
Students write down corresponding balanced equations.

Iron,
Sulphur
K.L.B. BOOK II P. 104
12 2-3
SALTS
Ionic equations.
Effects of heat on carbonates.
Effects of heat on nitrates.
Effects of heat on sulphates.
By the end of the lesson, the learner should be able to:
To identify spectator ions in double decomposition reactions.
To write ionic equations correctly.

To state effects of heat on nitrates.
To predict products resulting from heating metal nitrates.
Q/A: Ions present in given reactants.
Deduce the products of double decomposition reactions.
Give examples of equations.
Supervised practice.

Group experiments- To investigate effects of heat on various metal nitrates.
Observe various colour changes before, during and after heating.
Write equations for the reactions.
PbNO3, MgSO4 solutions.
Various carbonates.
Common metal nitrates.
Common sulphates.
K.L.B. BOOK II
K.L.B. BOOK II PP. 110-111
12 4
SALTS
Hygroscopy, Deliquescence and Efflorescence.
Uses of salts.
By the end of the lesson, the learner should be able to:
To define hygroscopic deliquescent and efflorescent salts.
To give examples of hygroscopic deliquescent and efflorescent salts.
Prepare a sample of various salts.
Expose them to the atmosphere overnight.
Students classify the salts as hygroscopic, deliquescent and / or efflorescent.
K.L.B. BOOK II P. 114
13

End of term examinations

14

Closing week


Your Name Comes Here


Download

Feedback