If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1-2 |
CHEMICAL FAMILIES
|
Halogens.
Physical properties of halogens.
Comparative physical properties of halogens. |
By the end of the
lesson, the learner
should be able to:
Identify halogens in the periodic table. Give examples of halogens. Identify physical states of halogens. To state and explain the trends in physical properties of halogens. |
Teacher demonstration: - To examine electrical properties of iodine, solubility in water of chlorine.
Examine a comparative table of physical properties of halogens. Discuss the deductions made from the table. |
Iodine crystals, electrical wire, a bulb.
text book |
KLB BK II
P. 47 K.L.B. BOOK II P. 47 |
|
2 |
Opener exam |
|||||||
3 | 1-2 |
CHEMICAL FAMILIES
|
Chemical properties of halogens.
Equations of reaction of halogens with metals. |
By the end of the
lesson, the learner
should be able to:
To describe laboratory preparation of chlorine gas. To describe reaction of halogens with metals. To write balanced chemical equations of reactions involving halogens. |
Teacher demonstration: - preparation of chlorine gas.
Reaction of chlorine and iron wool. Reaction of bromine and iron wool. Reaction of iodine and iron wool. Observe the rate of these reactions; hence deduce order of their reactivity of halogens. Re-write word equations as chemical equations then balance them. Supervised practice. |
Chlorine, iron wool, bromine.
text book |
K.L.B. BOOK IIPP. 48-50
K.L.B. BOOK II P. 50 |
|
3 | 3 |
CHEMICAL FAMILIES
|
Equations of reaction of halogens with metals.
|
By the end of the
lesson, the learner
should be able to:
To write balanced chemical equations of reactions involving halogens. |
Re-write word equations as chemical equations then balance them.
Supervised practice. |
text book
|
K.L.B. BOOK II P. 50
|
|
3 | 4 |
CHEMICAL FAMILIES
|
Reaction of halogens with water.
|
By the end of the
lesson, the learner
should be able to:
To describe reaction of halogens with water and the results obtained. |
Bubbling chlorine gas through water.
Carry out litmus test for the water. Explain the observations. |
Chlorine gas, litmus papers.
|
K.L.B. BOOK II P. 51
|
|
3 | 5 |
CHEMICAL FAMILIES
|
Reaction of halogens with water.
|
By the end of the
lesson, the learner
should be able to:
To describe reaction of halogens with water and the results obtained. |
Bubbling chlorine gas through water.
Carry out litmus test for the water. Explain the observations. |
Chlorine gas, litmus papers.
|
K.L.B. BOOK II P. 51
|
|
3 | 6 |
CHEMICAL FAMILIES
|
Some uses of halogens and their compounds.
|
By the end of the
lesson, the learner
should be able to:
To state uses of halogens and their compounds. |
Teacher elucidates uses of halogens and their compounds.
|
text book
|
K.L.B. BOOK II pp 52
|
|
4 | 1-2 |
CHEMICAL FAMILIES
|
Noble Gases.
Comparative physical properties of noble gases.
|
By the end of the
lesson, the learner
should be able to:
To describe physical properties of noble gases. To explain physical properties of noble gases. |
Make A comparative analysis of tabulated physical properties of noble gases.
|
text book
|
K.L.B. BOOK IIPP. 52-53
|
|
4 | 3 |
CHEMICAL FAMILIES
STRUCTURE & BONDING |
Uses of noble gases.
Chemical bonds. Ionic bond. |
By the end of the
lesson, the learner
should be able to:
State uses of noble gases. |
Teacher elucidates uses of noble gases.
|
text book
|
K.L.B. BOOK IIP. 54
|
|
4 | 4 |
STRUCTURE & BONDING
|
Ionic bond representation.
|
By the end of the
lesson, the learner
should be able to:
Use dot and cross diagrams to represent ionic bonding. |
Drawing diagrams of ionic bonds.
|
Chart- dot and cross diagrams.
Models for bonding. |
K.L.B. BOOK II P. 58
|
|
4 | 5 |
STRUCTURE & BONDING
|
Grant ionic structures.
|
By the end of the
lesson, the learner
should be able to:
Describe the crystalline ionic compound. Give examples of ionic substances. |
Discuss the group ionic structures of NaCl.
Teacher gives examples of other ionic substances: KNO3, potassium bromide, Ca (NO3)2, sodium iodide. |
Giant sodium chloride model.
|
K.L.B. BOOK II PP 56-58
|
|
4 | 6 |
STRUCTURE & BONDING
|
Physical properties of ionic compounds.
|
By the end of the
lesson, the learner
should be able to:
Describe physical properties of ionic compounds. Explain the differences in the physical properties of ionic compounds. |
Analyse tabulated comparative physical properties of ionic compounds.
Teacher asks probing questions. |
text book
|
K.L.B. BOOK IIPP 58-59
|
|
5 | 1-2 |
STRUCTURE & BONDING
|
Covalent bond.
Co-ordinate bond. |
By the end of the
lesson, the learner
should be able to:
Explain the formation of covalent bond Use dot and cross diagrams to represent covalent bond. To describe the co-ordinate bond To represent co-ordinate bond diagrammatically. |
Exposition: Shared pair of electrons in a hydrogen molecule, H2O, NH3, Cl2, and CO2.
Drawing of dot-and-cross diagrams of covalent bonds. Exposition- teacher explains the nature of co-ordinate bond. Students represent co-ordinate bond diagrammatically. |
text book
|
K.L.B. BOOK II PP 60-63
K.L.B. BOOK II P 65 |
|
5 | 3 |
STRUCTURE & BONDING
|
Molecular structure.
|
By the end of the
lesson, the learner
should be able to:
To describe the molecular structure. To give examples of substance exhibiting molecular structure |
Discussion ? To explain formation of the giant structure and give examples of substance exhibiting molecular structure.
|
text book
|
K.L.B. BOOK IIP 65
|
|
5 | 4 |
STRUCTURE & BONDING
|
Trend in physical properties of molecular structures.
|
By the end of the
lesson, the learner
should be able to:
To describe van- der -waals forces. To explain the trend in physical properties of molecular structures. |
Discuss comparative physical properties of substances. exhibiting molecular structure.
Explain variation in the physical properties. |
Sugar, naphthalene, iodine rhombic sulphur.
|
K.L.B. BOOK IIP 65
|
|
5 | 5 |
STRUCTURE & BONDING
|
Giant atomic structure in diamond.
|
By the end of the
lesson, the learner
should be able to:
To describe giant atomic structure in diamond. To state uses of diamond. |
Diagrammatic representation of diamond.
Discuss uses of diamond. |
Diagrams in textbooks.
|
K.L.B. BOOK II P 69
|
|
5 | 6 |
STRUCTURE & BONDING
|
Giant atomic structure in graphite.
|
By the end of the
lesson, the learner
should be able to:
To describe giant atomic structure in graphite. To state uses of graphite. |
Diagrammatic representation of graphite.
Discuss uses of graphite. |
Diagrams in textbooks.
|
K.L.B. BOOK II pp 69
|
|
6 | 1-2 |
STRUCTURE & BONDING
PROPERTIES AND TRENDS ACROSS PERIOD THREE |
Metallic bond.
Uses of some metals.
Physical properties of elements in periods. |
By the end of the
lesson, the learner
should be able to:
To describe mutual electronic forces between electrons and nuclei. To describe metallic bond. To compare physical properties of metals. To state uses of some metals. To compare electrical conductivity of elements in period 3 |
Discussion:
Detailed analysis of comparative physical properties of metals and their uses. Probing questions & brief explanations. Group experiments- Construct electrical circuits incorporating a magnesium ribbon, then aluminum foil, then sulphur in turns. The brightness of the bulb is noted in each case. Discuss the observations in terms of delocalised electrons. |
text book
The periodic table. |
K.L.B. BOOK IIP 70
K.L.B. BOOK IIP. 76 |
|
6 | 3 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
|
Physical properties of elements in periods.
|
By the end of the
lesson, the learner
should be able to:
To compare electrical conductivity of elements in period 3 |
Group experiments- Construct electrical circuits incorporating a magnesium ribbon, then aluminum foil, then sulphur in turns.
The brightness of the bulb is noted in each case. Discuss the observations in terms of delocalised electrons. |
The periodic table.
|
K.L.B. BOOK IIP. 76
|
|
6 | 4 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
|
Physical properties of elements in period 3.
|
By the end of the
lesson, the learner
should be able to:
To compare other physical properties of elements across period 3. |
Analyse comparative physical properties presented in form of a table.
Explain the trend in the physical properties given. |
The periodic table.
|
K.L.B. BOOK II P. 77
|
|
6 | 5 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
|
Chemical properties of elements in period 3.
|
By the end of the
lesson, the learner
should be able to:
To compare reactions of elements in period 3 with oxygen. |
Q/A: Products of reactions of Na, Mg, Al, P, & S with oxygen.
Discuss the trend in their reactivity; identify basic and acidic oxides. Exercise ? balanced chemical equations for the above reactions. |
The periodic table.
|
K.L.B. BOOK II PP. 79-80
|
|
6 | 6 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
|
Chemical properties of elements in the third period.
|
By the end of the
lesson, the learner
should be able to:
To compare reactions of elements in period 3 with water |
Q/A: Review reaction of sodium, Mg, chlorine, with water.
Infer that sodium is most reactive metal; non-metals do not react with water. |
The periodic table.
|
K.L.B. BOOK II PP. 80-81
|
|
7 | 1-2 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
|
Oxides of period 3 elements.
Chlorides of period 3 elements. |
By the end of the
lesson, the learner
should be able to:
To identify bonds across elements in period 3. To explain chemical behavior of their oxide. To explain chemical behavior of their chlorides. To describe hydrolysis reaction. |
Comparative analysis, discussion and explanation.
|
The periodic table.
|
K.L.B. BOOK II P. 84
K.L.B. BOOK II PP. 77-78 |
|
7 | 3 |
SALTS
|
Types of salts.
|
By the end of the
lesson, the learner
should be able to:
Define a salt. Describe various types of salts and give several examples in each case. |
Descriptive approach. Teacher exposes new concepts.
|
text book
|
K.L.B. BOOK II P. 91
|
|
7 | 4 |
SALTS
|
Solubility of salts in water.
|
By the end of the
lesson, the learner
should be able to:
To test solubility of various salts in cold water/warm water. |
Class experiments- Dissolve salts in 5 cc of water.
Record the solubility in a table, Analyse the results. |
Sulphates, chlorides, nitrates, carbonates of various metals.
|
K.L.B. BOOK II PP. 92-93
|
|
7 | 5 |
SALTS
|
Solubility of bases in water.
|
By the end of the
lesson, the learner
should be able to:
To test solubility of various bases in water. To carry out litmus test on the resulting solutions. |
Class experiments- Dissolve salts in 5cc of water.
Record the solubility in a table, Carry out litmus tests. Discuss the results. |
Oxides, hydroxides, of various metals, litmus papers.
|
K.L.B. BOOK IIPP. 94-95
|
|
7 | 6 |
SALTS
|
Solubility of bases in water.
|
By the end of the
lesson, the learner
should be able to:
To test solubility of various bases in water. To carry out litmus test on the resulting solutions. |
Class experiments- Dissolve salts in 5cc of water.
Record the solubility in a table, Carry out litmus tests. Discuss the results. |
Oxides, hydroxides, of various metals, litmus papers.
|
K.L.B. BOOK IIPP. 94-95
|
|
8 | 1-2 |
SALTS
|
Methods of preparing various salts.
|
By the end of the
lesson, the learner
should be able to:
To describe various methods of preparing some salts. |
Experimental and descriptive treatments of preparation of salts e.g. ZnSO4, CuSO4, NaCl and Pb(NO3)2.
|
CuO, H2SO4, HCl, NaOH, PbCO3, dil HNO3.
|
K.L.B. BOOK II pp96
|
|
8 | 3 |
SALTS
|
Direct synthesis of a salts.
|
By the end of the
lesson, the learner
should be able to:
To describe direct synthesis of a salt. To write balanced equations for the reactions. |
Group experiments- preparation of iron (II) sulphide by direct synthesis.
Give other examples of salts prepared by direct synthesis. Students write down corresponding balanced equations. |
Iron,
Sulphur |
K.L.B. BOOK II P. 104
|
|
8 | 4 |
SALTS
|
Ionic equations.
|
By the end of the
lesson, the learner
should be able to:
To identify spectator ions in double decomposition reactions. To write ionic equations correctly. |
Q/A: Ions present in given reactants.
Deduce the products of double decomposition reactions. Give examples of equations. Supervised practice. |
PbNO3, MgSO4 solutions.
|
K.L.B. BOOK II
|
|
8-10 |
Midterm |
|||||||
10 | 1-2 |
SALTS
|
Effects of heat on carbonates.
|
By the end of the
lesson, the learner
should be able to:
To state effects of heat on carbonates. To predict products resulting from heating metal carbonates. |
Group experiments- To investigate effects of heat on Na2CO3, K2CO3, CaCO3, ZnCO3, PbCO3, e.t.c.
Observe various colour changes before, during and after heating. Write equations for the reactions. |
Various carbonates.
|
K.L.B. BOOK II PP. 108-109
|
|
10 | 3 |
SALTS
|
Effects of heat on nitrates.
|
By the end of the
lesson, the learner
should be able to:
To state effects of heat on nitrates. To predict products resulting from heating metal nitrates. |
Group experiments- To investigate effects of heat on various metal nitrates.
Observe various colour changes before, during and after heating. Write equations for the reactions. |
Common metal nitrates.
|
K.L.B. BOOK II PP. 110-111
|
|
10 | 4 |
SALTS
|
Effects of heat on sulphates.
|
By the end of the
lesson, the learner
should be able to:
To state effects of heat on sulphates. To predict products results from heating metal sulphates. |
Group experiments- To investigate effects of heat on various sulphates.
Observe various colour changes before, during and after heating. Write equations for the reactions. |
Common sulphates.
|
K.L.B. BOOK II P. 113
|
|
10 | 5 |
SALTS
|
Hygroscopy, Deliquescence and Efflorescence.
|
By the end of the
lesson, the learner
should be able to:
To define hygroscopic deliquescent and efflorescent salts. To give examples of hygroscopic deliquescent and efflorescent salts. |
Prepare a sample of various salts.
Expose them to the atmosphere overnight. Students classify the salts as hygroscopic, deliquescent and / or efflorescent. |
|
K.L.B. BOOK II P. 114
|
|
10 | 6 |
SALTS
|
Uses of salts.
|
By the end of the
lesson, the learner
should be able to:
To state uses of salts |
Teacher elucidates uses of salts.
|
|
K.L.B. BOOK II P. 114
|
|
11 | 1-2 |
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
CARBON AND SOME OF ITS COMPOUNDS. |
Electrical conductivity.
Allotropy. |
By the end of the
lesson, the learner
should be able to:
To test for electrical conductivities of substances. Define allotropes and allotropy. Identify allotropes of carbon. Represent diamond and graphite diagrammatically. |
Group experiments- to identify conductors and non-conductors.
Explain the difference in (non) conductivities. Teacher exposes new terms. Review covalent bond. Discuss boding in diamond and graphite. |
Various solids, bulb, battery, & wires.
text book |
K.L.B. BOOK II PP. 118-119
K.L.B. BOOK II PP. 131-133 |
|
11 | 3 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Physical and chemical properties of diamond, graphite and amorphous carbon
|
By the end of the
lesson, the learner
should be able to:
Describe physical and chemical properties of diamond, graphite and amorphous carbon. State uses of carbon allotropes. |
Discuss physical and chemical properties of diamond, graphite and amorphous carbon.
Explain the Physical and chemical properties of diamond, graphite and amorphous carbon. Discuss uses of carbon allotropes. |
Charcoal, graphite.
|
K.L.B. BOOK II pp 134
|
|
11 | 4 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Burning carbon and oxygen.
|
By the end of the
lesson, the learner
should be able to:
Describe reaction of carbon with oxygen. |
Teacher demonstration- Prepare oxygen and pass dry oxygen into a tube containing carbon. Heat the carbon. Observe effects on limewater.
|
Carbon, limewater, tube, limewater stand& Bunsen burner.
|
K.L.B. BOOK II PP. 134-135
|
|
11 | 5 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Reduction properties of carbon.
|
By the end of the
lesson, the learner
should be able to:
Describe reduction properties of carbon. Show reduction properties of carbon. |
Teacher demonstration ? Burn strongly a mixture of carbon and CuO on a bottle top.
Observe colour changes and give underlying explanation |
CuO, pounded charcoal, Bunsen burner& bottle top
|
K.L.B. BOOK II P.126
|
|
11 | 6 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Reaction of carbon with acids.
Preparation of CO2.
|
By the end of the
lesson, the learner
should be able to:
Describe reaction of carbon with acids. Prepare CO2 in the lab. |
Teacher demonstration- reaction of carbon with hot conc HNO3.
Write balanced equations for the reaction. Review effects of heat on carbonates. Group experiments/teacher demonstration- preparation of CO2. |
Conc. HNO3, limewater.
|
K.L.B. BOOK II P.126
|
|
12 | 1-2 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Properties of CO2.
Chemical equations for reactions involving CO2. |
By the end of the
lesson, the learner
should be able to:
Describe properties of CO2 Write balanced CO2. |
Simple experiments to determine properties of CO2.
Discuss the observations. Give examples of reactions. Write corresponding balanced chemical equations. |
Lime water,
Magnesium ribbon, Universal indicator, lit candle. text book |
K.L.B. BOOK II PP.138-139
K.L.B. BOOK II PP.139-140 |
|
12 | 3 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Uses of CO2.
|
By the end of the
lesson, the learner
should be able to:
State uses of CO2 |
Discuss briefly the uses of CO2.
|
text book
|
K.L.B. BOOK II PP.140-1
|
|
12 | 4 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Uses of CO2.
|
By the end of the
lesson, the learner
should be able to:
State uses of CO2 |
Discuss briefly the uses of CO2.
|
text book
|
K.L.B. BOOK II PP.140-1
|
|
12 | 5 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Carbon monoxide lab preparation.
Chemical properties of carbon monoxide. |
By the end of the
lesson, the learner
should be able to:
To describe preparation of carbon monoxide in the lab |
Teacher demonstration: preparation of carbon monoxide in the lab.
Make observations. |
text book
|
K.L.B. BOOK II PP. 142-143
|
|
12 | 6 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Carbonates and hydrogen carbonates.
|
By the end of the
lesson, the learner
should be able to:
To write chemical equations for reactions of carbonates and hydrogen carbonates with acids. |
Discuss the observations above.
Write chemical equations for the reactions. |
text book
|
K.L.B. BOOK II
|
Your Name Comes Here