If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 4 |
Similarity and enlargement
|
Similar figures
|
By the end of the
lesson, the learner
should be able to:
Calculate lengths of objects |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts Sets |
KLB Mathematics
Book Two Pg 87-88 Discovering secondary pg 52 |
|
2 | 5 |
Similarity and enlargement
|
Enlargement
Enlarge objects |
By the end of the
lesson, the learner
should be able to:
Enlarge an object |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 97 Discovering secondary pg 57 |
|
2 | 6 |
Similarity and enlargement
|
Linear scale factor
|
By the end of the
lesson, the learner
should be able to:
Determine the linear scale factor |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 100 Discovering secondary pg 54 |
|
3 | 1 |
Similarity and enlargement
|
Negative scale factor
|
By the end of the
lesson, the learner
should be able to:
Find the negative scale factor |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 104 Discovering secondary pg 59 |
|
3 | 2 |
Similarity and enlargement
|
Positive and negative linear scale factor
Area scale factor |
By the end of the
lesson, the learner
should be able to:
Solve problems on linear scale factor |
Defining
Discussions Solving problem Explaining |
Sets
Books Videos Charts Apparatus |
KLB Mathematics
Book Two Pg 105-106 Discovering secondary pg 60 |
|
3 | 3 |
Similarity and enlargement
|
Area of scale factor
Volume scale factor |
By the end of the
lesson, the learner
should be able to:
Use area scale factor to solve problems |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 108 Discovering secondary pg 64 |
|
3 | 4 |
Similarity and enlargement
|
Volume scale factor
Area and volume scale factor |
By the end of the
lesson, the learner
should be able to:
Use volume scale factor to solve problems |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 110-111 Discovering secondary pg 64 |
|
3 | 5 |
Trigonometry
|
Pythagoras Theorem
Solutions of problems Using Pythagoras Theorem |
By the end of the
lesson, the learner
should be able to:
Derive Pythagoras Theorem |
Deriving Pythagoras Theorem
|
Chalkboard Charts Illustrating derived theorem
Charts illustrating Pythagoras theorem |
KLB BK2 Pg 120 Discovering secondary pg 67
|
|
3 | 6 |
Trigonometry
|
Application to real life Situation
|
By the end of the
lesson, the learner
should be able to:
Use the formula A = ?s(s-a)(s-b)(s-c) to solve problems in real life |
Solving problems in real life using the formula A = ?s(s-a)(s-b)(s-c)
|
Mathematical table
|
KLB BK2 Pg 159 Discovering secondary pg 67
|
|
4 | 1 |
Trigonometry
|
Trigonometry Tangent, sine and cosines
Trigonometric Table |
By the end of the
lesson, the learner
should be able to:
Define tangent, sine and cosine ratios from a right angles triangle |
Defining what a tangent, Cosine and sine are using a right angled triangle
|
Charts illustrating tangent, sine and cosine
Mathematical table |
KLB BK2 Pg 123,132,133 Discovering secondary pg 70
|
|
4 | 2 |
Trigonometry
|
Angles and sides of a right angled triangle
Establishing Relationship of sine and cosine of complimentary angles |
By the end of the
lesson, the learner
should be able to:
Use the sine, cosine and tangent in calculating the length of a right angled triangle and also finding the angle given two sides and unknown angle The length can be obtained if one side is given and an angle |
Using mathematical tables Finding the length using sine ratio Finding the length using Cosine and tangent ratio Finding the angle using Sine, cosine and tangent
|
Mathematical table Charts Chalkboard
Chalkboards |
KLB BK2 Pg 125, 139, 140 Discovering secondary pg
|
|
4 | 3 |
Trigonometry
|
Sines and cosines of Complimentary angles
Relationship between tangent, sine and cosine |
By the end of the
lesson, the learner
should be able to:
Use the relationship of sine and cosine of complimentary angles in solving problems |
Solving problems involving the sines and cosines of complimentary angles
|
Chalkboard Charts illustrating the relationship of sines and cosines of complimentary angles
Charts showing the three related trigonometric ratio |
KLB BK2 Pg 145
|
|
4 | 4 |
Trigonometry
|
Trigonometric ratios of special angles 30, 45, 60 and 90
|
By the end of the
lesson, the learner
should be able to:
Determine the trigonometric ratios of special angles without using tables |
Determining the trigonometric ratios of special angles 30,45,60 and 90 without using tables
|
Charts showing isosceles right angled triangle Charts illustrating Equilateral triangle
|
KLB BK2 Pg 146-147
|
|
4 | 5 |
Trigonometry
|
Application of Trigonometric ratios in solving problems
Logarithms of Sines |
By the end of the
lesson, the learner
should be able to:
Solve trigonometric problems without using tables |
Solving trigonometric problems of special angles
|
Chalkboard
Chalkboard Mathematical tables |
KLB BK2 Pg 148
|
|
4 | 6 |
Trigonometry
|
Logarithms of cosines And tangents
Reading tables of logarithms of sines, cosines and tangents |
By the end of the
lesson, the learner
should be able to:
Read the logarithm of cosines and tangents from mathematical tables |
Reading logarithms of cosine and tangent from mathematical table
|
Chalkboard Mathematical table
|
KLB BK2 Pg 150-152
|
|
5 | 1 |
Trigonometry
|
Application of trigonometry to real life situations
Area of a triangle Area of a triangle given the base and height (A = ? bh) |
By the end of the
lesson, the learner
should be able to:
Solve problems in real life using trigonometry |
Solving problems using trigonometry in real life
|
Mathematical table
Chart illustrating worked problem Chalkboard |
KLB BK2 Pg 153-154
|
|
5 | 2 |
Trigonometry
|
Area of a triangle using the formula (A = ? absin?)
Area of a triangle using the formula A = ?s(s-a)(s-b)(s-c) |
By the end of the
lesson, the learner
should be able to:
- Derive the formula ? absinc - Using the formula derived in calculating the area of a triangle given two sides and an included angle |
Deriving the formula ? absinc Using the formula to calculate the area of a triangle given two sides and an included angle
|
Charts illustrating a triangle with two sides and an included angle Charts showing derived formula
Charts illustrating a triangle with three sides Charts illustrating a worked example i.e. mathematical table |
KLB BK2 Pg 156
|
|
5 | 3 |
Trigonometry
|
Area of Quadrilateral and Polygons Area of a square, rectangle, rhombus, parallelogram and trapezium
|
By the end of the
lesson, the learner
should be able to:
Calculate the are of a triangle, square, rectangle, rhombus, parallelogram and trapezium |
Calculating the area of a triangle, square, rectangle, rhombus, parallelogram and trapezium
|
Charts illustrating formula used in calculating the areas of the quadrilateral
|
KLB BK2 Pg 161-163
|
|
5 | 4 |
Trigonometry
|
Area of a kite
Area of other polygons (regular polygon) e.g. Pentagon |
By the end of the
lesson, the learner
should be able to:
Find the area of a kite |
Calculating the area of a Kite
|
Model of a kite
Mathematical table Charts illustrating Polygons |
KLB BK2 Pg 163
|
|
5 | 5 |
Trigonometry
|
Area of irregular Polygon
Area of part of a circle Area of a sector (minor sector and a major sector) |
By the end of the
lesson, the learner
should be able to:
Find the area of irregular polygons |
Finding the area of irregular polygons
|
Charts illustrating various irregular polygons Polygonal shapes
Charts illustrating sectors |
KLB BK2 Pg 166
|
|
5 | 6 |
Trigonometry
|
Defining a segment of a circle Finding the area of a segment of a circle
Area of a common region between two circles given the angles and the radii |
By the end of the
lesson, the learner
should be able to:
- Define what a segment of a circle is - Find the area of a segment of a circle |
Finding the area of a segment by first finding the area of a sector less the area of a smaller sector given R and r and angle ?
|
Chart illustrating a Segment
Charts illustrating common region between the circles Use of a mathematical table during calculation |
KLB BK2 Pg 169-170
|
|
6 | 1 |
Trigonometry
|
Area of a common region between two circles given only the radii of the two circles and a common chord
|
By the end of the
lesson, the learner
should be able to:
Calculate the area of common region between two circle given the radii of the two intersecting circles and the length of a common chord of the two circles |
Finding the area of a common region between two intersecting
|
Charts illustrating common region between two intersecting circles
|
KLB BK 2 Pg 176
|
|
6 | 2 |
Trigonometry
|
Surface area of solids Surface area of prisms Cylinder (ii) Triangular prism (iii) Hexagonal prism
Area of a square based Pyramid |
By the end of the
lesson, the learner
should be able to:
Define prism and hence be in a position of calculating the surface area of some prisms like cylinder, triangular prism and hexagonal prism |
Defining a prism Calculating the surface area of the prisms
|
Models of cylinder, triangular and hexagonal prisms
Models of a square based pyramid |
KLB BK 2 Pg 177
|
|
6 | 3 |
Trigonometry
|
Surface area of a Rectangular based Pyramid
Surface area of a cone using the formula A = ?r2 + ?rl |
By the end of the
lesson, the learner
should be able to:
Find the surface area of a rectangular based pyramid |
Finding the surface area of a rectangular based pyramid
|
Models of a Rectangular based pyramid
Models of a cone |
KLB BK 2 Pg 179-180
|
|
6 | 4 |
Trigonometry
|
Surface area of a frustrum of a cone and a pyramid
Finding the surface area of a sphere |
By the end of the
lesson, the learner
should be able to:
Find the surface area of a frustrum of a cone and pyramid |
Finding the surface area of a frustrum of a cone and a pyramid
|
Models of frustrum of a cone and a pyramid
Models of a sphere Charts illustrating formula for finding the surface area of a sphere |
KLB BK 2 Pg 182
|
|
6 | 5 |
Trigonometry
|
Surface area of a Hemispheres
Volume of Solids Volume of prism (triangular based prism) |
By the end of the
lesson, the learner
should be able to:
Find the surface area of a hemisphere |
Finding the surface area of a hemisphere
|
Models of a hemisphere
Models of a triangular based prism |
KLB BK 2 Pg 184
|
|
6 | 6 |
Trigonometry
|
Volume of prism (hexagonal based prism) given the sides and angle
|
By the end of the
lesson, the learner
should be able to:
Find the volume of a hexagonal based prism |
Calculating the volume of an hexagonal prism
|
Models of hexagonal based prism
|
KLB BK 2 Pg 187
|
|
7 | 1 |
Trigonometry
|
Volume of a pyramid (square based and rectangular based)
Volume of a cone |
By the end of the
lesson, the learner
should be able to:
Find the volume of a square based pyramid and rectangular based pyramid |
Finding the surface area of the base Applying the formula V=?x base area x height to get the volume of the pyramids (square and rectangular based)
|
Models of square and Rectangular based Pyramids
Model of a cone |
KLB BK 2 Pg 189-190
|
|
7 | 2 |
Trigonometry
|
Volume of a frustrum of a cone
Volume of a frustrum of a pyramid |
By the end of the
lesson, the learner
should be able to:
Find the volume of a frustrum of a cone |
Finding the volume of a full cone before its cutoff Finding the volume of a cut cone then subtracting
|
Models of a frustrum of a cone
Models of frustrum of a pyramid |
KLB BK 2 Pg 192
|
|
7 | 3 |
Trigonometry
|
Volume of a sphere (v = 4/3?r3)
Volume of a Hemisphere {(v = ? (4/3?r3)} |
By the end of the
lesson, the learner
should be able to:
Find the volume of sphere given the radius of the sphere |
Finding the volume of a Sphere
|
Model of a sphere Mathematical table
Models of hemisphere |
KLB BK 2 Pg 195
|
|
7 | 4 |
Trigonometry
|
Application of area of triangles to real life
|
By the end of the
lesson, the learner
should be able to:
Use the knowledge of the area of triangles in solving problems in real life situation |
Solving problems in real life using the knowledge of the area of triangle
|
Mathematical table Chart illustrating formula used
|
KLB BK 2 Pg 159
|
|
7 | 5 |
Trigonometric Ratios
|
Tangent of an angle
|
By the end of the
lesson, the learner
should be able to:
name the sides of a right-angled triangle as opposite, adjacent and hypotenuse. Find the tangent of an angle by calculation |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
7 | 6 |
Trigonometric Ratios
|
Using tangents in calculations
Application of tangents |
By the end of the
lesson, the learner
should be able to:
calculate the size of an angle given two sides and an angle from tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
8 | 1 |
Trigonometric Ratios
|
The sine of an angle
The cosine of an angle |
By the end of the
lesson, the learner
should be able to:
find the sine of an angle by calculations and through tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
8 | 2 |
Trigonometric Ratios
|
Application of sine and cosine
Complementary angles |
By the end of the
lesson, the learner
should be able to:
apply sines to work out lengths and angles. Apply cosine to work out length and angles |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
8 | 3 |
Trigonometric Ratios
|
Special angles
|
By the end of the
lesson, the learner
should be able to:
find the sine, cos, and tan of 300,600,450,00,900, without using tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
8 | 4 |
Trigonometric Ratios
|
Application of Special angles
Logarithms of sines, cosines and tangents |
By the end of the
lesson, the learner
should be able to:
apply the knowledge of special angles to solve problems |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
8 | 5 |
Trigonometric Ratios
|
Relationship between sin, cos and tan
Application to real life situation |
By the end of the
lesson, the learner
should be able to:
relate sin, cos and tan that is tan?=sin? cos? Solve problems using the relationship |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
8 | 6 |
Trigonometric Ratios
Area of A Triangle |
Problem solving
Area = |
By the end of the
lesson, the learner
should be able to:
solve problems on trigonometry |
Problem solving
|
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
9 | 1 |
Area of A Triangle
|
Solve problems involving =
|
By the end of the
lesson, the learner
should be able to:
solve problems involving area of triangles using the formula Area = |
Discussions
Drawing triangles Measuring lengths/angles Calculating area |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 155-157
|
|
9 | 2 |
Area of A Triangle
|
A =?s(s-a) (s-b) (s-c)
Problem solving |
By the end of the
lesson, the learner
should be able to:
find the area of a triangle given the three sides |
Discussions
Drawing triangles Measuring lengths/angles Calculating area |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 155-157
|
|
9 | 3 |
Area of Quadrilaterals
|
Area of parallelogram
Area of Rhombus |
By the end of the
lesson, the learner
should be able to:
find the area of quadrilaterals like trapeziums, parallelogram etc. by dividing the shape of triangles |
Drawing trapeziums/polygons
Measuring lengths/angles Reading mathematical tables Discussions |
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables |
KLB Maths Bk2 Pg. 160
|
|
9 | 4 |
Area of Quadrilaterals
|
Area of trapezium and kite
Area of regular polygons |
By the end of the
lesson, the learner
should be able to:
solve problems on the area of a regular polygon |
Drawing trapeziums/polygons
Measuring lengths/angles Reading mathematical tables Discussions |
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables Mathematical tables Chalkboard illustrations |
KLB Maths Bk2 Pg. 162-163
|
|
9 | 5 |
Area of Quadrilaterals
Area of Part of a Circle |
Problem solving
Area of a sector |
By the end of the
lesson, the learner
should be able to:
solve problems on area of quadrilaterals and other polygons |
Learners solve problems
|
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables Circles Chart illustrating the area of a sector |
KLB Maths Bk2 Pg. 165-166
|
|
9 | 6 |
Area of Part of a Circle
|
Area of a segment
|
By the end of the
lesson, the learner
should be able to:
find area of a segment |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a minor segment |
KLB Maths Bk2 Pg. 167-169
|
|
10 | 1 |
Area of Part of a Circle
|
Common region between two circles
Common region between two circles |
By the end of the
lesson, the learner
should be able to:
find the area of the common region between two circles. |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a minor segment |
KLB Maths Bk2 Pg. 167-169
|
|
10 | 2 |
Area of Part of a Circle
Surface Area of Solids |
Problem solving
Surface area of prisms |
By the end of the
lesson, the learner
should be able to:
solve problems involving the area of part of a circle |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a minor segment Chalkboard illustrations Prism Chalkboard illustrations |
KLB Maths Bk2 Pg. 167-169
|
|
10 | 3 |
Surface Area of Solids
|
Surface area of pyramid
Surface area of a cone |
By the end of the
lesson, the learner
should be able to:
find the surface area of a pyramid |
Drawing pyramids
Measuring lengths/ angles Opening pyramids to form nets Discussions Calculating area |
Pyramids with square base, rectangular base, triangular base
Cone |
KLB Maths Bk2 Pg. 178
|
|
10 | 4 |
Surface Area of Solids
|
Surface area of frustrum with circular base
|
By the end of the
lesson, the learner
should be able to:
find the surface area of frustrum with circular base |
Drawing cones/frustums
Making cones/frustums Measuring lengths/ angles Discussions |
Chart illustrating the surface area of a frustrum
|
KLB Maths Bk2 Pg. 181-283
KLBMathematics Bk2 Discovering Secondary Mathematics Bk2 |
|
10 | 5 |
Surface Area of Solids
|
Surface area of frustrum with square base
Surface area of frustrum with rectangular base |
By the end of the
lesson, the learner
should be able to:
find the surface area of frustrum with square base |
Drawing cones/frustums
Making cones/frustums Measuring lengths/ angles Discussions Learners find the surface area |
Chart illustrating frustrum with a square base
Chart illustrating frustrum with a rectangular base |
KLB Maths Bk2 Pg. 181-183
|
|
10 | 6 |
Surface Area of Solids
|
Surface area of spheres
Problem solving |
By the end of the
lesson, the learner
should be able to:
find the surface area of a sphere |
Sketching spheres
Making spheres Measuring diameters/ radii of spheres Discussions |
Chalkboard illustrations
Past paper questions |
KLB Maths Bk2 Pg. 183
|
|
11 | 1 |
Volume of Solids
|
Volume of prism
Volume of pyramid |
By the end of the
lesson, the learner
should be able to:
find the volume of a prism |
Identifying prisms
Identifying the cross-sectional area Drawing/sketching prisms |
Prism
Pyramid |
KLB Maths Bk2 Pg. 186-188
|
|
11 | 2 |
Volume of Solids
|
Volume of a cone
Volume of a sphere |
By the end of the
lesson, the learner
should be able to:
find the volume of a cone |
Making cones/frustums
Opening cones/frustums to form nets |
Cone
Sphere |
KLB Maths Bk2 Pg. 191
|
|
11 | 3 |
Volume of Solids
|
Volume of frustrum
|
By the end of the
lesson, the learner
should be able to:
find the volume of a frustrum with a circular base |
Making cones/frustums
Opening cones/frustums to form nets |
Frustrum with circular base
|
KLB Maths Bk2 Pg. 192-193
|
|
11 | 4 |
Volume of Solids
|
Volume of frustrum with a square base
Volume of frustrum with a rectangular base |
By the end of the
lesson, the learner
should be able to:
find the volume of a frustrum with a square base |
Making cones/frustums
Opening cones/frustums to form nets |
Frustrum with square base
Frustrum with rectangular base |
KLB Maths Bk2 Pg. 192-193
|
|
11 | 5 |
Volume of Solids
|
Application to real life situation
Problem solving |
By the end of the
lesson, the learner
should be able to:
apply the knowledge of volume of solids to real life situations. |
Making cones/frustums
Opening cones/frustums to form nets |
Models of pyramids, prism, cones and spheres
Past paper questions |
KLB Maths Bk2 Pg. 193-194
|
|
11 | 6 |
Quadratic Expressions and Equations
|
Expansion of Algebraic Expressions
Quadratic identities |
By the end of the
lesson, the learner
should be able to:
expand algebraic expressions |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 203
|
|
12 | 1 |
Quadratic Expressions and Equations
|
Application of identities
|
By the end of the
lesson, the learner
should be able to:
identify and use the three Algebraic identities |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 204-205
|
|
12 | 2 |
Quadratic Expressions and Equations
|
Factorise the Identities
Factorise other quadratic expressions |
By the end of the
lesson, the learner
should be able to:
factorise the identities |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions Chart illustrating factorization of a quadratic expression |
KLB Maths Bk2 Pg. 205-208
|
|
12 | 3 |
Quadratic Expressions and Equations
|
Factorisation of expressions of the form k2-9y2
Simplification of an expression by factorisation |
By the end of the
lesson, the learner
should be able to:
factorise a difference of two squares |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 205-208
|
|
12 | 4 |
Quadratic Expressions and Equations
|
Solving quadratic equations
The formation of quadratic equations |
By the end of the
lesson, the learner
should be able to:
solve quadratic equations |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 208
|
|
12 | 5 |
Quadratic Expressions and Equations
|
Formation and solving of quadratic equations from word problems
Solving on quadratic equations |
By the end of the
lesson, the learner
should be able to:
form and solve quadratic equations from word problems |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 208-210
|
|
12 | 6 |
Quadratic Expressions and Equations
|
Forming quadratic equations from the roots
|
By the end of the
lesson, the learner
should be able to:
form quadratic equations given the roots of the equation |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 210
|
Your Name Comes Here