If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1 |
Rotation
|
Introduction
|
By the end of the
lesson, the learner
should be able to:
Draw an image of an object under rotation |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 71-73 Discovering secondary pg 44 |
|
2 | 2 |
Rotation
|
Centre of rotation
Angle of rotation Rotation in the Cartesian plane |
By the end of the
lesson, the learner
should be able to:
Determine the center of rotation |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 73 Discovering secondary pg 46 |
|
2 | 3 |
Rotation
|
Rotation in the Cartesian plane
|
By the end of the
lesson, the learner
should be able to:
Rotate objects about the 90 |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts Sets |
KLB Mathematics
Book Two Pg 76 Discovering secondary pg 47 |
|
2 | 4 |
Rotation
|
Rotational symmetry of plane figures
Rotational symmetry of solids Rotation and congruence |
By the end of the
lesson, the learner
should be able to:
State the order of rotational symmetry |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 78-80 Discovering secondary pg 49 |
|
2 | 5 |
Trigonometry
|
Pythagoras Theorem
Solutions of problems Using Pythagoras Theorem Application to real life Situation |
By the end of the
lesson, the learner
should be able to:
Derive Pythagoras Theorem |
Deriving Pythagoras Theorem
|
Chalkboard Charts Illustrating derived theorem
Charts illustrating Pythagoras theorem Mathematical table |
KLB BK2 Pg 120 Discovering secondary pg 67
|
|
2 | 6 |
Trigonometry
|
Trigonometry Tangent, sine and cosines
Trigonometric Table |
By the end of the
lesson, the learner
should be able to:
Define tangent, sine and cosine ratios from a right angles triangle |
Defining what a tangent, Cosine and sine are using a right angled triangle
|
Charts illustrating tangent, sine and cosine
Mathematical table |
KLB BK2 Pg 123,132,133 Discovering secondary pg 70
|
|
3 | 1 |
Trigonometry
|
Angles and sides of a right angled triangle
Establishing Relationship of sine and cosine of complimentary angles Sines and cosines of Complimentary angles |
By the end of the
lesson, the learner
should be able to:
Use the sine, cosine and tangent in calculating the length of a right angled triangle and also finding the angle given two sides and unknown angle The length can be obtained if one side is given and an angle |
Using mathematical tables Finding the length using sine ratio Finding the length using Cosine and tangent ratio Finding the angle using Sine, cosine and tangent
|
Mathematical table Charts Chalkboard
Chalkboards Chalkboard Charts illustrating the relationship of sines and cosines of complimentary angles |
KLB BK2 Pg 125, 139, 140 Discovering secondary pg
|
|
3 | 2 |
Trigonometry
|
Relationship between tangent, sine and cosine
Trigonometric ratios of special angles 30, 45, 60 and 90 Application of Trigonometric ratios in solving problems |
By the end of the
lesson, the learner
should be able to:
Relate the three trigonometric ratios, the sine, cosine and tangent |
Relating the three trigonometric ratios
|
Charts showing the three related trigonometric ratio
Charts showing isosceles right angled triangle Charts illustrating Equilateral triangle Chalkboard |
KLB BK2 Pg 145
|
|
3 | 3 |
Trigonometry
|
Logarithms of Sines
Logarithms of cosines And tangents |
By the end of the
lesson, the learner
should be able to:
Read the logarithms of sines |
Solving problems by reading logarithm table of sines
|
Chalkboard Mathematical tables
Chalkboard Mathematical table |
KLB BK2 Pg 149
|
|
3 | 4 |
Trigonometry
|
Reading tables of logarithms of sines, cosines and tangents
Application of trigonometry to real life situations Area of a triangle Area of a triangle given the base and height (A = ? bh) |
By the end of the
lesson, the learner
should be able to:
Read the logarithms of sines, cosines and tangents from tables |
Solving problems through reading the table of logarithm of sines, cosines and tangents
|
Chalkboard Mathematical table
Mathematical table Chart illustrating worked problem Chalkboard |
KLB BK2 Pg 149-152
|
|
3 | 5 |
Trigonometry
|
Area of a triangle using the formula (A = ? absin?)
Area of a triangle using the formula A = ?s(s-a)(s-b)(s-c) Area of Quadrilateral and Polygons Area of a square, rectangle, rhombus, parallelogram and trapezium |
By the end of the
lesson, the learner
should be able to:
- Derive the formula ? absinc - Using the formula derived in calculating the area of a triangle given two sides and an included angle |
Deriving the formula ? absinc Using the formula to calculate the area of a triangle given two sides and an included angle
|
Charts illustrating a triangle with two sides and an included angle Charts showing derived formula
Charts illustrating a triangle with three sides Charts illustrating a worked example i.e. mathematical table Charts illustrating formula used in calculating the areas of the quadrilateral |
KLB BK2 Pg 156
|
|
3 | 6 |
Trigonometry
|
Area of a kite
Area of other polygons (regular polygon) e.g. Pentagon |
By the end of the
lesson, the learner
should be able to:
Find the area of a kite |
Calculating the area of a Kite
|
Model of a kite
Mathematical table Charts illustrating Polygons |
KLB BK2 Pg 163
|
|
4 | 1 |
Trigonometry
|
Area of irregular Polygon
Area of part of a circle Area of a sector (minor sector and a major sector) Defining a segment of a circle Finding the area of a segment of a circle |
By the end of the
lesson, the learner
should be able to:
Find the area of irregular polygons |
Finding the area of irregular polygons
|
Charts illustrating various irregular polygons Polygonal shapes
Charts illustrating sectors Chart illustrating a Segment |
KLB BK2 Pg 166
|
|
4 | 2 |
Trigonometry
|
Area of a common region between two circles given the angles and the radii
Area of a common region between two circles given only the radii of the two circles and a common chord Surface area of solids Surface area of prisms Cylinder (ii) Triangular prism (iii) Hexagonal prism |
By the end of the
lesson, the learner
should be able to:
Find the area of common region between two circles given the angles ? Education Plus Agencies |
Calculating the area of a segment
|
Charts illustrating common region between the circles Use of a mathematical table during calculation
Charts illustrating common region between two intersecting circles Models of cylinder, triangular and hexagonal prisms |
KLB BK 2 Pg 175
|
|
4 | 3 |
Trigonometry
|
Area of a square based Pyramid
Surface area of a Rectangular based Pyramid Surface area of a cone using the formula A = ?r2 + ?rl |
By the end of the
lesson, the learner
should be able to:
Find the total surface area of a square based pyramid |
Finding the surface area of a square based pyramid
|
Models of a square based pyramid
Models of a Rectangular based pyramid Models of a cone |
KLB BK 2 Pg 178
|
|
4 | 4 |
Trigonometry
|
Surface area of a frustrum of a cone and a pyramid
Finding the surface area of a sphere |
By the end of the
lesson, the learner
should be able to:
Find the surface area of a frustrum of a cone and pyramid |
Finding the surface area of a frustrum of a cone and a pyramid
|
Models of frustrum of a cone and a pyramid
Models of a sphere Charts illustrating formula for finding the surface area of a sphere |
KLB BK 2 Pg 182
|
|
4 | 5 |
Trigonometry
|
Surface area of a Hemispheres
Volume of Solids Volume of prism (triangular based prism) Volume of prism (hexagonal based prism) given the sides and angle |
By the end of the
lesson, the learner
should be able to:
Find the surface area of a hemisphere |
Finding the surface area of a hemisphere
|
Models of a hemisphere
Models of a triangular based prism Models of hexagonal based prism |
KLB BK 2 Pg 184
|
|
4 | 6 |
Trigonometry
|
Volume of a pyramid (square based and rectangular based)
Volume of a cone Volume of a frustrum of a cone |
By the end of the
lesson, the learner
should be able to:
Find the volume of a square based pyramid and rectangular based pyramid |
Finding the surface area of the base Applying the formula V=?x base area x height to get the volume of the pyramids (square and rectangular based)
|
Models of square and Rectangular based Pyramids
Model of a cone Models of a frustrum of a cone |
KLB BK 2 Pg 189-190
|
|
5 | 1 |
Trigonometry
|
Volume of a frustrum of a pyramid
Volume of a sphere (v = 4/3?r3) |
By the end of the
lesson, the learner
should be able to:
Find the volume of a frustrum of a Pyramid |
Finding volume of a full pyramid Finding volume of cutoff pyramid Find volume of the remaining fig (frustrum) by subtracting i.e. Vf = (V ? v)
|
Models of frustrum of a pyramid
Model of a sphere Mathematical table |
KLB BK 2 Pg 194
|
|
5 | 2 |
Trigonometry
Trigonometric Ratios |
Volume of a Hemisphere {(v = ? (4/3?r3)}
Application of area of triangles to real life Tangent of an angle |
By the end of the
lesson, the learner
should be able to:
Find the volume of a hemisphere |
Working out the volume of a hemisphere
|
Models of hemisphere
Mathematical table Chart illustrating formula used Protractor Ruler Right corners Mathematical tables |
Macmillan BK 2 Pg 173
|
|
5 | 3 |
Trigonometric Ratios
|
Tangent of an angle
Using tangents in calculations Application of tangents |
By the end of the
lesson, the learner
should be able to:
find the tangent of an angle from tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
5 | 4 |
Trigonometric Ratios
|
The sine of an angle
The cosine of an angle |
By the end of the
lesson, the learner
should be able to:
find the sine of an angle by calculations and through tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
5 | 5 |
Trigonometric Ratios
|
Application of sine and cosine
Complementary angles Special angles |
By the end of the
lesson, the learner
should be able to:
apply sines to work out lengths and angles. Apply cosine to work out length and angles |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
5 | 6 |
Trigonometric Ratios
|
Application of Special angles
Logarithms of sines, cosines and tangents Relationship between sin, cos and tan |
By the end of the
lesson, the learner
should be able to:
apply the knowledge of special angles to solve problems |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
6 | 1 |
Trigonometric Ratios
Area of A Triangle |
Application to real life situation
Problem solving Area = |
By the end of the
lesson, the learner
should be able to:
apply the knowledge of trigonometry to real life situations |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
6 | 2 |
Area of A Triangle
|
Solve problems involving =
A =?s(s-a) (s-b) (s-c) |
By the end of the
lesson, the learner
should be able to:
solve problems involving area of triangles using the formula Area = |
Discussions
Drawing triangles Measuring lengths/angles Calculating area |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 155-157
|
|
6 | 3 |
Area of A Triangle
Area of Quadrilaterals Area of Quadrilaterals |
Problem solving
Area of parallelogram Area of Rhombus |
By the end of the
lesson, the learner
should be able to:
solve problems on area of a triangle given the three sides |
Discussions
Drawing triangles Measuring lengths/angles Calculating area |
Protractor
Ruler Right corners Mathematical tables Parallelograms Trapeziums Polygons Squares/rectangles |
KLB Maths Bk2 Pg. 155-157
|
|
6 | 4 |
Area of Quadrilaterals
|
Area of trapezium and kite
Area of regular polygons Problem solving |
By the end of the
lesson, the learner
should be able to:
solve problems on the area of a regular polygon |
Drawing trapeziums/polygons
Measuring lengths/angles Reading mathematical tables Discussions |
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables Mathematical tables Chalkboard illustrations |
KLB Maths Bk2 Pg. 162-163
|
|
6 | 5 |
Area of Part of a Circle
|
Area of a sector
Area of a segment |
By the end of the
lesson, the learner
should be able to:
find area of a sector |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a sector Chart illustrating the area of a minor segment |
KLB Maths Bk2 Pg. 167-169
|
|
6 | 6 |
Area of Part of a Circle
|
Common region between two circles
Common region between two circles Problem solving |
By the end of the
lesson, the learner
should be able to:
find the area of the common region between two circles. |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a minor segment Chart illustrating the area of a minor segment Chalkboard illustrations |
KLB Maths Bk2 Pg. 167-169
|
|
7 | 1 |
Surface Area of Solids
|
Surface area of prisms
Surface area of pyramid Surface area of a cone |
By the end of the
lesson, the learner
should be able to:
find the surface area of a prism. |
Drawing prisms
Measuring lengths Opening prisms to form nets Discussions Calculating area |
Prism Chalkboard illustrations
Pyramids with square base, rectangular base, triangular base Cone |
KLB Maths Bk2 Pg. 177
|
|
7 | 2 |
Surface Area of Solids
|
Surface area of frustrum with circular base
Surface area of frustrum with square base |
By the end of the
lesson, the learner
should be able to:
find the surface area of frustrum with circular base |
Drawing cones/frustums
Making cones/frustums Measuring lengths/ angles Discussions |
Chart illustrating the surface area of a frustrum
Chart illustrating frustrum with a square base |
KLB Maths Bk2 Pg. 181-283
KLBMathematics Bk2 Discovering Secondary Mathematics Bk2 |
|
7 | 3 |
Surface Area of Solids
|
Surface area of frustrum with rectangular base
Surface area of spheres Problem solving |
By the end of the
lesson, the learner
should be able to:
find the surface area of frustrum with rectangular base |
Drawing cones/frustums
Making cones/frustums Measuring lengths/ angles Discussions |
Chart illustrating frustrum with a rectangular base
Chalkboard illustrations Past paper questions |
KLB Maths Bk2 Pg. 181-183
|
|
7 | 4 |
Volume of Solids
|
Volume of prism
Volume of pyramid Volume of a cone |
By the end of the
lesson, the learner
should be able to:
find the volume of a prism |
Identifying prisms
Identifying the cross-sectional area Drawing/sketching prisms |
Prism
Pyramid Cone |
KLB Maths Bk2 Pg. 186-188
|
|
7 | 5 |
Volume of Solids
|
Volume of a sphere
Volume of frustrum |
By the end of the
lesson, the learner
should be able to:
find the volume of a sphere |
Identifying spheres
Sketching spheres Measuring radii/ diameters Discussions |
Sphere
Frustrum with circular base |
KLB Maths Bk2 Pg. 195
|
|
7-8 |
Midterm |
|||||||
9 | 1 |
Volume of Solids
|
Volume of frustrum with a square base
Volume of frustrum with a rectangular base Application to real life situation |
By the end of the
lesson, the learner
should be able to:
find the volume of a frustrum with a square base |
Making cones/frustums
Opening cones/frustums to form nets |
Frustrum with square base
Frustrum with rectangular base Models of pyramids, prism, cones and spheres |
KLB Maths Bk2 Pg. 192-193
|
|
9 | 2 |
Volume of Solids
Quadratic Expressions and Equations Quadratic Expressions and Equations |
Problem solving
Expansion of Algebraic Expressions Quadratic identities |
By the end of the
lesson, the learner
should be able to:
solve problems on volume of solids |
Making cones/frustums
Opening cones/frustums to form nets |
Past paper questions
Real-life experiences Worked out expressions |
KLB Maths Bk2 Pg. 196
|
|
9 | 3 |
Quadratic Expressions and Equations
|
Application of identities
Factorise the Identities Factorise other quadratic expressions |
By the end of the
lesson, the learner
should be able to:
identify and use the three Algebraic identities |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions Chart illustrating factorization of a quadratic expression |
KLB Maths Bk2 Pg. 204-205
|
|
9 | 4 |
Quadratic Expressions and Equations
|
Factorisation of expressions of the form k2-9y2
Simplification of an expression by factorisation |
By the end of the
lesson, the learner
should be able to:
factorise a difference of two squares |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 205-208
|
|
9 | 5 |
Quadratic Expressions and Equations
|
Solving quadratic equations
The formation of quadratic equations Formation and solving of quadratic equations from word problems |
By the end of the
lesson, the learner
should be able to:
solve quadratic equations |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 208
|
|
9 | 6 |
Quadratic Expressions and Equations
Linear Inequalities |
Solving on quadratic equations
Forming quadratic equations from the roots Inequalities symbols |
By the end of the
lesson, the learner
should be able to:
solve problems on quadratic equations |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions Number lines Graph papers Square boards Negative and positive numbers |
KLB Maths Bk2 Pg. 208-210
|
|
10 | 1 |
Linear Inequalities
|
Number line
Inequalities in one unknown |
By the end of the
lesson, the learner
should be able to:
illustrate inequalities on a number line |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers |
KLB Maths Bk2 Pg. 213-224
|
|
10 | 2 |
Linear Inequalities
|
Graphical representation
Graphical solutions of simultaneous linear inequalities Graphical solutions of simultaneous linear inequalities |
By the end of the
lesson, the learner
should be able to:
represent linear inequalities in one unknown graphically |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines Graph papers
Square boards Negative and positive numbers Number lines Graph papers |
KLB Maths Bk2 Pg. 213-224
|
|
10 | 3 |
Linear Inequalities
|
Area of the wanted region
Inequalities from inequality graphs Problem solving. |
By the end of the
lesson, the learner
should be able to:
calculate the area of the wanted region |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers |
KLB Maths Bk2 Pg. 213-224
|
|
10 | 4 |
Linear Motion
|
Displacement, velocity, speed and acceleration
Distinguishing terms |
By the end of the
lesson, the learner
should be able to:
Define displacement, speed velocity and acceleration |
Teacher/pupil discussion
Plotting graphs Drawing graphs |
Graph papers
Stones Pieces of paper |
KLB Maths Bk2 Pg. 228-238
|
|
10 | 5 |
Linear Motion
|
Distinguishing velocity and acceleration
Distance time graphs Interpret the velocity time graph |
By the end of the
lesson, the learner
should be able to:
determine velocity and acceleration |
Learners determine velocity and acceleration
Plotting graphs Drawing graphs |
Graph papers
Stones Pieces of paper Drawn graphs |
KLB Maths Bk2 Pg. 228-238
|
|
10 | 6 |
Linear Motion
|
Interpreting graphs
Relative speed (objects moving in the same direction) Problem solving |
By the end of the
lesson, the learner
should be able to:
interpret graphs of linear motion |
Learners interpret graphs
|
Drawn graphs
Real life situation Chalkboard illustrations Past paper questions |
KLB
Maths Bk2 Pg.334 |
|
11 | 1 |
Statistics
|
Definition
Collection and organization of data Frequency tables |
By the end of the
lesson, the learner
should be able to:
define statistics |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
11 | 2 |
Statistics
|
Grouped data
Mean of ungrouped data |
By the end of the
lesson, the learner
should be able to:
group data into reasonable classes |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
11 | 3 |
Statistics
|
Median of ungrouped data
Mean of ungrouped data Median of a grouped data modal class |
By the end of the
lesson, the learner
should be able to:
calculate the median of ungrouped data and state the mode |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
11 | 4 |
Statistics
|
Data
Representation.
Line graphs
Bar graphs Pictogram |
By the end of the
lesson, the learner
should be able to:
represent data in form of a line graph |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers Pictures which are whole, half, quarter |
KLB Maths Bk2 Pg. 241-252
|
|
11 | 5 |
Statistics
|
Histograms
Frequency polygons |
By the end of the
lesson, the learner
should be able to:
represent data in form of histograms |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers Histograms drawn. Data |
KLB Maths Bk2 Pg. 241-252
|
|
11 | 6 |
Statistics
|
Histograms with uneven distribution
Interpretation of data Problem solving |
By the end of the
lesson, the learner
should be able to:
draw histograms with uneven distribution |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Data with uneven classes
Real life situations Past paper questions |
KLB Maths Bk2 Pg. 241-252
|
|
12 | 1 |
Angle Properties of a Circle
|
Arc chord segment
Angles subtended by the same arc in the same segment Angle at the centre and at the circumference |
By the end of the
lesson, the learner
should be able to:
identify an arc, chord and segment |
Discussions
Drawing circles Measuring radii/ diameters/angles Identifying the parts of a circle |
Chart illustrating arc chord and segment
Chart illustrating Angles subtended by the same arc in same segment are equal Chart illustrating Angles subtended at the centre by an arc and one subtended at the circumference |
KLB Maths Bk2 Pg. 264-278
|
|
12 | 2 |
Angle Properties of a Circle
|
Angles subtended by the diameter at the circumference
Cyclic quadrilateral |
By the end of the
lesson, the learner
should be able to:
state the angle in the semi-circle |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Circles showing the
different parts |
KLB Maths Bk2 Pg. 264-278
|
|
12 | 3 |
Angle Properties of a Circle
|
Cyclic quadrilateral
Exterior angle property Problem solving |
By the end of the
lesson, the learner
should be able to:
find and compute angles of a cyclic quadrilateral |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Circles showing the
different parts different parts Past paper questions |
KLB Maths Bk2 Pg. 264-278
|
|
12 | 4 |
Angle Properties of a Circle
Vectors Vectors |
Problem solving
Definition and Representation of vectors Equivalent vectors |
By the end of the
lesson, the learner
should be able to:
state all the properties and use them selectively to solve missing angles. |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Circles showing the
different parts Past paper questions 1x2 matrices Graph papers Square boards Ruler |
KLB Maths Bk2 Pg. 264-278
|
|
12 | 5 |
Vectors
|
Addition of vectors
Multiplication of vectors |
By the end of the
lesson, the learner
should be able to:
add vectors |
Writing position vectors
Adding/subtracting numbers Squaring and getting the square root of numbers |
1x2 matrices
Graph papers Square boards Ruler |
KLB Maths Bk2 Pg. 286-289
|
|
12 | 6 |
Vectors
|
Position vectors
Column vector Magnitude of a vector Mid - point Translation vector |
By the end of the
lesson, the learner
should be able to:
define a position vector illustrate position vectors on a Cartesian plane |
Writing position vectors
Adding/subtracting numbers Squaring and getting the square root of numbers |
1x2 matrices
Graph papers Square boards Ruler |
KLB Maths Bk2 Pg.298
|
Your Name Comes Here